Please wait a minute...
医药导报  2019, Vol. 38 Issue (6): 711-717    DOI: 10.3870/j.issn.1004-0781.2019.06.05
  本期目录 | 过刊浏览 | 高级检索 |
附子毒性生物碱的肝脏摄取机制*
从娇娇1,2(),张雷3,覃晓慧1,2,张峻颖4,吴春勇1,2()
1.中国药科大学药物质量与安全预警教育部重点实验室,南京 210009
2.中国药科大学药物分析系,南京 210009
3.山东省食品药品检验研究院,济南 250101
4.中国药科大学中药制剂教研室,南京 211198
Uptake Mechanism of Toxic Alkaloids of Fuzi in Liver
Jiaojiao CONG1,2(),Lei ZHANG3,Xiaohui QIN1,2,Junying ZHANG4,Chunyong WU1,2()
1.Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
2.Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
3.Shandong Institute for Food and Drug Control, Shandong 250101, China
4.Department of Pharmaceutics of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
全文: PDF(3372 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

目的 探讨附子主要毒性生物碱成分乌头碱、新乌头碱和次乌头碱的肝脏摄取转运机制。方法 以HepG2细胞为体外模型,进行细胞摄取研究,并用液相色谱-质谱串联(LC-MS/MS)法测定细胞内的药物浓度。结果 HepG2细胞对乌头碱、新乌头碱和次乌头碱的摄取具有温度、浓度和pH依赖性,化学解耦联剂FCCP和能量抑制剂叠氮化钠可显著抑制乌头碱、新乌头碱和次乌头碱的细胞摄取。有机阳离子药物如奎尼丁、维拉帕米、吡拉明、苯海拉明及金刚烷胺可显著抑制3种生物碱的摄取,但有机阳离子转运蛋白(OCTs)、有机阳离子/肉毒碱转运蛋白(OCTNs)、多药及毒素外排转运蛋白(MATEs)和质膜单胺转运蛋白(PMAT)的典型底物或抑制剂对附子生物碱的细胞摄取没有抑制作用。结论 附子毒性生物碱进入肝细胞以主动转运为主,新型有机阳离子/质子逆向转运蛋白可能是其进入肝脏的分子基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
从娇娇
张雷
覃晓慧
张峻颖
吴春勇
关键词 附子生物碱毒性细胞摄取有机阳离子/质子逆向转运蛋白HepG2细胞    
Abstract

Objective To characterize the liver uptake of the main toxic alkaloids of Fuzi including aconitine, mesaconitine and hypaconitine. Methods Celler uptake was studied by using HepG2 cells as an in vitro model, and the drug concentration was determined by liquid chromatography-mass spectrometry (LC-MS/MS). Results Aconitine, mesaconitine and hypaconitine were transported into HepG2 cells in a temperature-, concentration- and pH-dependent manner, which were significantly reduced by FCCP (a protonophore) and sodium azide (a metabolic inhibitor).The uptakes of Fuzi alkaloids were greatly inhibited by various cationic drugs such as quinidine, verapamil, pyrilamine, diphenhydramine and amantadine.However, the prototypical substrates or inhibitors of well-characterized organic cation transporter (OCTs), organic cation/carnitine transporters (OCTNs), multidrug and toxin extrusion transporters (MATEs) and plasma membrane monoamine transporter (PMAT) didn’t inhibit the cellular uptake of each Fuzi alkaloid. Conclusion Toxic alkaloids of Fuzi are mainly actively transported into liver cells, and the novel organic cation/proton antiporters may be the molecular basis for their entry into liver.

Key wordsFuzi    Toxic alkaloids    Cellular uptake    Organic cation/proton antiporters    HepG2 cells
收稿日期: 2018-10-15      出版日期: 2019-06-11
基金资助:*国家自然科学基金资助项目(81473357,81673681);中央高校基本科研业务费项目(2015PT062);江苏高校优势学科建设工程资助项目;双一流建设项目(CPU2018GY34)
引用本文:   
从娇娇,张雷,覃晓慧,张峻颖,吴春勇. 附子毒性生物碱的肝脏摄取机制*[J]. 医药导报, 2019, 38(6): 711-717.
Jiaojiao CONG,Lei ZHANG,Xiaohui QIN,Junying ZHANG,Chunyong WU. Uptake Mechanism of Toxic Alkaloids of Fuzi in Liver. Herald of Medicine, 2019, 38(6): 711-717.
链接本文:  
http://www.yydbzz.com/CN/10.3870/j.issn.1004-0781.2019.06.05      或      http://www.yydbzz.com/CN/Y2019/V38/I6/711
图1  LC-MS/MS测定HepG2细胞中附子生物碱的典型色谱图
A.空白细胞裂解液;B.空白细胞裂解液加入附子生物碱对照品和内标;C.药物摄取实验中细胞样品
图2  孵育温度和时间对附子生物碱在HepG2细胞中摄取的影响($\bar{x}±s$em,n=3)
与37 ℃比较,*1P<0.01
图3  孵育液中药物浓度对附子生物碱在HepG2细胞中摄取的影响($\bar{x}±s$em,n=3)
图4  能量抑制剂对附子生物碱在HepG2细胞中摄取的影响($\bar{x}±s$em,n=3)
与对照组比较,*1P<0.01
图5  FCCP对附子生物碱在HepG2细胞中摄取的影响($\bar{x}±s$em,n=3)
与对照组比较,*1P<0.01
图6  胞外和胞内pH对附子生物碱在HepG2细胞中摄取的影响($\bar{x}±s$em,n=3)
与对照组比较,*1P<0.01,*2P<0.05
化合物 浓度/
(mmol·L-1)
摄取率/%(相对于对照)
乌头碱 新乌头碱 次乌头碱
对照组 100 100 100
吡拉明 1 11.60±0.73*1 12.80±0.66*1 14.60±0.70*1
奎尼丁 1 3.98±0.59*1 4.83±0.85*1 6.71±0.71*1
维拉帕米 0.5 9.92±0.92*1 11.70±1.10*1 11.40±1.30*1
苯海拉明 1 2.00±1.20*1 5.24±1.90*1 6.64±2.20*1
金刚烷胺 1 57.10±5.70*1 55.30±5.30*1 54.60±6.30*1
西咪替丁 1 116.00±7.30 109.00±6.40 93.70±4.20
四乙胺 1 104.00±5.30 97.90±4.80 82.00±3.70
MPP+ 1 126.00±13.00 116.00±12.00 104.00±7.60
乙胺嘧啶 0.1 124.00±12.00 123.00±13.00 95.40±9.30
L-肉碱 1 122.00±4.10 123.00±3.80 99.00±3.60
表1  抑制剂对附子生物碱在HepG2细胞中摄取的影响
图7  trans-stimulation实验对附子生物碱在HepG2细胞摄取的影响($\bar{x}±s$em,n=3)
与对照组比较,*1P<0.01,*2P<0.05
[1] 国家药典委员会.中华人民共和国药典(一部)[M].北京:中国医药科技出版社,2015:191-193.
[2] MURAYAMA M,MORI T,BANDO H,et al.Studies on the constituents of Aconitum species.IX.The pharmacological properties of pyro-type aconitine alkaloids,components of processed aconite powder “kako-bushi-matsu”:analgesic,antiinflammatory and acute toxic activities[J].J Ethnopharmacol,1991,35(2):159-164.
doi: 10.1016/0378-8741(91)90068-O
[3] 邓伟. 甘草附子汤治疗膝骨关节炎的临床研究[J].中药材,2008,31(7):1107-1110.
[4] ZHANG Q,CHEN X,LUO Y,et al.Fuzi enhances antitu-mor efficacy of radiotherapy on lung cancer[J].J Cancer,2017,8(19):3945-3951.
doi: 10.7150/jca.22162
[5] GAO T,BI H,MA S,et al.The antitumor and immunosti-mulating activities of water soluble polysaccharides from Radix Aconiti,Radix Aconiti Lateralis and Radix Aconiti Kusnezoffii[J].Nat Prod Commun,2010,5(3):447-455.
[6] 王立岩,张大方,曲晓波,等.附子炮制前后有效部位强心作用的实验研究[J].中国中药杂志,2009,34(5):596-599.
[7] ZHANG J M,LIAO W,HE Y X,et al.Study on intestinal absorption and pharmacokinetic characterization of diester diterpenoid alkaloids in precipitation derived from fuzi-gancao herb-pair decoction for its potential interaction mechanism investigation[J].J Ethnopharmacol,2013,147(1):128-135.
doi: 10.1016/j.jep.2013.02.019 pmid: 23506993
[8] YU B,CAO Y,XIONG Y K.Pharmacokinetics of aconitine-type alkaloids after oral administration of Fuzi(Aconiti Lateralis Radix Praeparata) in rats with chronic heart failure by microdialysis and ultra-high performance liquid chromatography-tandem mass spectrometry[J].J Ethnopharmacol,2015,165(1):173-179.
doi: 10.1016/j.jep.2015.01.057
[9] SONG S,TANG Q,HUO H,et al.Simultaneous quantifica-tion and pharmacokinetics of alkaloids in Herba Ephedrae-Radix Aconiti Lateralis extracts[J].J Anal Toxicol,2015,39(1):58-68.
doi: 10.1093/jat/bku113
[10] CHAN T Y.Aconitum alkaloid poisoning because of conta-mination of herbs by Aconite Roots[J].Phytother Res,2016,30(1):3-8.
doi: 10.1002/ptr.v30.1
[11] ZHANG Y,YU L,JIN W,et al.Reducing toxicity and increasing efficiency:aconitine with liquiritin and glycyrrhetinic acid regulate calcium regulatory proteins in rat myocardial cell[J].Afr J Tradit Complement Altern Med,2017,14(4):69-79.
doi: 10.21010/ajtcam
[12] YANG C,LI Z,ZHANG T,et al.Transcellular transport of aconitine across human intestinal Caco-2 cells[J].Food Chem Toxicol,2013,57:195-200.
doi: 10.1016/j.fct.2013.03.033
[13] LI L,SUN B,ZHANG Q,et al.Metabonomic study on the toxicity of Hei-Shun-Pian,the processed lateral root of Aconitum carmichaelii Debx.(Ranunculaceae)[J].J Ethnopharmacol,2008,116(3):561-568.
doi: 10.1016/j.jep.2008.01.014
[14] NIITSU H,FUJITA Y,FUJITA S,et al.Distribution of Aconitum alkaloids in autopsy cases of aconite poisoning[J].Forensic Sci Int,2013,227(1/2/3):111-117.
doi: 10.1016/j.forsciint.2012.10.021 pmid: 23131306
[15] GUILLOUZO A,CORLU A,ANINAT C,et al.The human hepatoma HepaRG cells:a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics[J].Chem Biol Interact,2007,168(1):66-73.
doi: 10.1016/j.cbi.2006.12.003
[16] MADAN A,GRAHAM R A,CARROLL K M,et al.Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes[J].Drug Metab Dispos,2003,31(4):421-431.
doi: 10.1124/dmd.31.4.421 pmid: 3222212642468
[17] 冯超,刘筱滢,孙晓敏,等.LC-ESI-MS/MS测定苦参碱及其在HepG2细胞模型中的摄取特性[J].中国实验方剂学杂志,2015,21(18):89-93.
[18] GIACOMINI K M,HUANG S M,TWEEDIE D J,et al.Membrane transporters in drug development[J].Nat Rev Drug Discov,2010,9(3):215.
[19] PARK R,LEACH W J,ARIEFF A I.Determination of liver intracellular pH in vivo and its homeostasis in acute acidosis and alkalosis[J].Am J Physiol,1979,236(3):240-245.
[20] GRUNDEMANN D,GORBOULEV V,GAMBARYAN S,et al.Drug excretion mediated by a new prototype of polyspecific transporter[J].Nature,1994,372(6506):549-552.
doi: 10.1038/372549a0 pmid: 7990927
[21] KEKUDA R,PRASAD P D,WU X,et al.Cloning and functional characterization of a potential-sensitive,polyspecific organic cation transporter(OCT3) most abundantly expressed in placenta[J].J Biol Chem,1998,273(26):15971-15979.
doi: 10.1074/jbc.273.26.15971
[22] OHTA K Y,INOUE K,HAYASHI Y,et al.Molecular iden-ftiication and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney[J].Drug Metab Dispos,2006,34(11):1868-1874.
doi: 10.1124/dmd.106.010876
[23] URAKAMI Y,OKUDA M,MASUDA S,et al.Functional characteristics and membrane localization of rat multispecific organic cation transporters,OCT1 and OCT2,mediating tubular secretion of cationic drugs[J].J Pharmacol Exp Ther,1998,287(2):800-805.
[24] WU X,GEORGE R L,HUANG W,et al.Structural and functional characteristics and tissue distribution pattern of rat OCTN1,an organic cation transporter,cloned from placenta[J].Biochim Biophys Acta,2000,1466(/2):315-327.
doi: 10.1016/S0005-2736(00)00189-9 pmid: 10825452
[25] KONIG J,ZOLK O,SINGER K,et al.Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1:determinants of uptake and transcellular translocation of organic cations[J].Br J Pharmacol,2011,163(3):546-555.
doi: 10.1111/j.1476-5381.2010.01052.x
[26] ENGEL K,WANG J.Interaction of organic cations with a newly identified plasma membrane monoamine transporter[J].Mol Pharmacol,2005,68(5):1397-1407.
doi: 10.1124/mol.105.016832
[27] AHMADIMOGHADDAM D,HOFMAN J,ZEMANKOVA L,et al.Synchronized activity of organic cation transporter 3(Oct3/Slc22a3) and multidrug and toxin extrusion 1(Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat[J].Toxicol Sci,2012,128(2):471-481.
doi: 10.1093/toxsci/kfs160
[28] TANIHARA Y,MASUDA S,SATO T,et al.Substrate speci-ficity of MATE1 and MATE2-K,human multidrug and toxin extrusions/H(+)-organic cation antiporters[J].Biochem Pharmacol,2007,74(2):359-371.
doi: 10.1016/j.bcp.2007.04.010
[29] OKURA T,KATO S,DEGUCHI Y.Functional expression of organic cation/carnitine transporter 2(OCTN2/SLC22A5) in human brain capillary endothelial cell line hCMEC/D3,a human blood-brain barrier model[J].Drug Metab Pharmacokinet,2014,29(1):69-74.
doi: 10.2133/dmpk.DMPK-13-RG-058
[30] ITO S,KUSUHARA H,KUROIWA Y,et al.Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine[J].J Pharmacol Exp Ther,2010,333(1):341-350.
doi: 10.1124/jpet.109.163642
[31] 王心怡,张志荣.美吡拉敏敏感的、逆质子有机阳离子转运体的研究进展[J].药学学报,2016,51(6):886-891.
[32] WU C,SUN X,FENG C,et al.Proton-coupled organic cation antiporter contributes to the hepatic uptake of matrine[J].J Pharm Sci,2016,105(3):1301-1306.
doi: 10.1016/S0022-3549(15)00190-2
[33] WANG X,QI B,SU H,et al.Pyrilamine-sensitive proton-coupled organic cation(H(+)/OC) antiporter for brain-specific drug delivery[J].J Control Release,2017,254:34-43.
doi: 10.1016/j.jconrel.2017.03.034
[34] MIZUUCHI H,KATSURA T,ASHIDA K,et al.Diphenhyd-ramine transport by pH-dependent tertiary amine transport system in Caco-2 cells[J].Am J Physiol Gastrointest Liver Physiol,2000,278(4):563-569.
doi: 10.1152/ajpgi.2000.278.4.G563
[35] PAN X,WANG L,GRUNDEMANN D,et al.Inhibition of human organic cation transporters by the alkaloids matrine and oxymatrine[J].Fitoterapia,2014,92:206-210.
doi: 10.1016/j.fitote.2013.11.009
[36] KOEPSELL H,LIPS K,VOLK C.Polyspecific organic cation transporters:structure,function,physiological roles,and biopharmaceutical implications[J].Pharm Res,2007,24(7):1227-1251.
doi: 10.1007/s11095-007-9254-z
[1] 刘小艳,王然,封学伟,韩朝宏,冯欣. 1339例非计划妊娠女性用药咨询[J]. 医药导报, 2019, 38(6): 800-802.
[2] 黄未劼,张同辉,蔡泽宇,庞聪,沈枕,方攀,潘经媛. 柴连感冒颗粒对大鼠的长期毒性研究[J]. 医药导报, 2019, 38(3): 321-327.
[3] 鄂晓,游庆霞,陈效,尹东锋. 泊洛沙姆188修饰聚乙烯亚胺作为基因载体的体外评价*[J]. 医药导报, 2019, 38(2): 238-243.
[4] 徐艳梅,裴丽娟,杜高锋,宋更申. 顶空气相色谱-质谱法测定依度沙班原料药中遗传毒性物质[J]. 医药导报, 2019, 38(1): 92-95.
[5] 马会霞,金莉莉,万小平,谢红娟. 头孢吡肟神经毒性的研究进展[J]. 医药导报, 2018, 37(增刊): 49-51.
[6] 高亚东. 双黄连口服液(仅适用于儿童)联合重组人干扰素α-2b治疗小儿病毒性肺炎55例[J]. 医药导报, 2018, 37(增刊): 10-12.
[7] 王涛,宋海波. 吡咯里西啶类生物碱肝毒性研究进展及风险分析*[J]. 医药导报, 2018, 37(9): 1033-1037.
[8] 王佳,朱鹏霞,林松柳,药阳洋,倪月秋. 川芎嗪逆转庆大霉素所致豚鼠耳肾氧化应激反应*[J]. 医药导报, 2018, 37(8): 939-942.
[9] 江凡,张炎,林晓燕,段秋龙,张虹. 高效液相色谱法测定布林佐胺中对甲苯磺酸异丙酯[J]. 医药导报, 2018, 37(7): 882-885.
[10] 伍三兰,蔡华丹,赵妮,徐佳强,陈晨,师少军,吕永宁,侯均. 伏立康唑致肝毒性临床特点*[J]. 医药导报, 2018, 37(3): 387-390.
[11] 张卫兵,陈鹏帅,黄庆科. 异甘草酸镁治疗病毒性肝炎疗效与安全性的Meta分析[J]. 医药导报, 2018, 37(3): 361-367.
[12] 陈世奇,吴子一,魏安琪,史华旭,倪月秋. 川芎嗪对庆大霉素致耳中毒豚鼠耳蜗组织中8-羟基脱氧鸟苷的影响*[J]. 医药导报, 2018, 37(12): 1437-1440.
[13] 康小龙,田红林,何承辉,卢军. 刺山柑总生物碱对系统性硬皮病转化生长因子-β1/Smad4通路的调控作用*[J]. 医药导报, 2018, 37(11): 1307-1310.
[14] 李彬,黄琳,赵建国,阮剑. 甲巯咪唑联合地黄总苷对毒性弥漫性甲状腺肿模型小鼠甲状腺激素水平和脱碘酶的影响[J]. 医药导报, 2018, 37(10): 1185-1188.
[15] 李维娜,张一颖,刘峘,曾宪斌,庄严,谢雁鸣. 基于医院信息系统数据分析双环醇对血小板的影响*[J]. 医药导报, 2017, 36(9): 1002-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

通信地址:武汉市蔡甸区中法生态城同济医院专家社区C栋平层《医药导报》编辑部,邮政编码:430199
鄂ICP备07004419号
版权所有:《医药导报》编辑部
网址:www.yydb.cn;www.yydbzz.com
电话:027-69378382,69378383 电子邮箱: yydbzz@163.com
技术支持:北京玛格泰克科技发展有限公司 鄂ICP备09001709号-11