- [22] 刘用国,许娇红,张红雷.短葶山麦冬多糖对小鼠腹腔巨噬细胞功能的影响[J].中成药,2015,37(10):2290-2292.
- [23] 曹科峰,黄兵兵,杨帆.麦冬多糖对 CCl_4 诱导的急性肝损伤的保护作用及其作用机制研究[J].中医药导报,2015,21(14):25-28.
- [24] 刘现辉,郭晓娜,展俊平,等.天麻多糖对 H22 荷瘤小鼠 细胞周期及 caspase 蛋白活性的影响[J].中国老年学杂志,2015,20(35):5681-5682.
- [25] 赵健,黄锐,李怀斌,等.电针及天麻多糖对局灶性脑缺血大鼠缺陷灶周围额叶皮质巢蛋白、肝细胞因子表达的影响[J].针刺研究,2015,40(2):108-112.
- [26] KIM S D. Isolation, structure and cholesterol esterase inhi-

- bitory activity of a polysaccharide, PS-A, from *Gordyceps-sinensis* [J].J Appl Biol Chen, 2010, 53:784-789.
- [27] GUNELI E, TUGYAN K, OZURLT H, et al. Effect of melatonin on testicular damage in streptozotocin-induced diabetes rats [J]. Eur Surg Res, 2008, 40(4):354-355.
- [28] 张庭廷,潘继红,聂刘旺,等.金樱子多糖的抑菌和抗炎 作用研究[J].生物学杂志,2005,22(2):41-42.
- [29] 孟亚红.蔥酮-硫酸法测定空心莲子草中多糖含量[J].凯 里学院学报,2016,34(3):67-69.
- [30] 成芳,刘润,马晓艳,等.共振光散射法测定南方红豆杉叶多糖含量[J].新疆农业大学学报,2015,38(5):406-411.

毛细管气相色谱法

测定甲磺酸伊马替尼原料药中4种有机溶剂残留量*

王善春,张喜全,李洋,李慧

(正大天晴药业集团股份有限公司研究院,南京 210042)

摘 要 目的 建立可同时测定甲磺酸伊马替尼原料药中石油醚($60\sim90$ °C)、乙酸乙酯、乙醇和吡啶 4 种残留有机溶剂的分析方法。方法 采用毛细管气相色谱法。色谱柱为 DB-WAX 毛细管柱,氢离子火焰检测器(FID),温度为 200 °C,进样口温度为 180 °C,程序升温,载气为氦气,流速为 5 mL·min⁻¹,进样量为 1 μ L。以 N,N-二甲基甲酰胺 (DMF)为溶剂,采用外标法测定 3 批甲磺酸伊马替尼原料药中有机溶剂石油醚($60\sim90$ °C)、乙酸乙酯、乙醇和吡啶的残留量。结果 4 种有机溶剂在建立的色谱条件下均能完全分离,在所考察的质量浓度范围内线性关系良好(r=0.999 $8\sim0.999$ 9);进样精密度(RSD)均小于 2.0%(n=5);乙酸乙酯、乙醇、吡啶的回收率均在 $97\%\sim101\%$ 之间,石油醚的回收率为 88.7%,RSD 均小于 2.0%(n=5);石油醚($60\sim90$ °C)、乙酸乙酯、乙醇和吡啶的检测限分别为 0.58,0.42,0.18,0.61 ng,定量限分别为 1.8,2.1,0.5,2.5 ng。结论 该实验建立的方法简便、灵敏,结果准确、可靠。

关键词 伊马替尼,甲磺酸;色谱法,气相,毛细管;残留,有机溶剂

中图分类号 R979.1;R927.2 文献标识码 B 文章编号 1004-0781(2017)12-1390-04

DOI 10.3870/j.issn.1004-0781.2017.12.015

Determination of Four Kinds of Organic Residual Solvents in Imatinib Mesylate by Capillary Gas Chromatography

WANG Shanchun, ZHANG Xiquan, LI Yang, LI Hui (ChiaTaiTianqing Pharmaceutical Research Institute, Nanjing 210042, China)

ABSTRACT Objective To establish a method for simultaneous determination of petroleum ether (60-90 °C), ethyl acetate, ethanol and pyridineas residual organic solvents in imatinib mesylate API. **Methods** Capillary gas chromatography was adopted. The determination was performed on DB-WAX capillary column with FID detector. The injector temperature was 180 °C and the temperature of FID was 200 °C by temperature programming with nitrogen serving as carrier gas at a flow rate of $5 \text{ mL} \cdot \text{min}^{-1}$. The injection volume was 1 µL. With N, N-dimethylformamide (DMF) serving as solvent, four kinds of organic solvent residues in the samples were calculated by external standard method. **Results** The four kinds of organic solvent were completely separated under the established chromatographic condition. A good linearity was obtained in the concentration ranges of them (r=0.9998-0.9999). The sampling precisions (RSDs) were less than 2.0% (n=5). The average recovery rates of ethyl acetate, ethanol and pyridine were 97%-101% and that of petroleum ether was 88.7% (RSD<<2.0%, n=5). The limits of detection for them were 0.58,0.42,0.18 and 0.61 ng respectively (S/N=3:1). The limits of quantification for them were 1.8,2.1,0.5 and 2.5 ng, respectively (S/N=10:1). **Conclusion** The method is simple, sensitive, accurate and reliable.

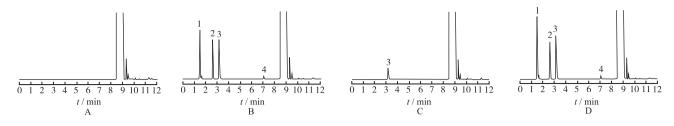
KEY WORDS Imatinib, mesylate; Chromatography, gas, capillary; Residual, organic solvents

甲磺酸伊马替尼(imatinib mesylate,商品名: Glive,格列卫)是由瑞士 Novartis(诺华)公司研发的酪 氨酸激酶抑制药,于2001年5月首次在美国上市[1]。 甲磺酸伊马替尼主要用于治疗慢性髓性白血病 (chronic myeloid leukemia, CML)、恶性胃肠道间质肿 瘤(gastrointestinalstromal tumors, GIST)、Ph 染色体阳 性的急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)以及黑色素瘤^[2]。甲磺酸伊马替尼在 合成和精制过程中使用了石油醚(60~90 ℃)、乙酸乙 酯、乙醇和吡啶等有机溶剂。利用毛细管气相色谱法 检测药物中残留溶剂,近年来国内外专家在这个领域 中已经取得一定成绩[3-7]。笔者在本研究按照 2015 年 版《中华人民共和国药典》四部通则 0861[8] 的要求及 人用药品注册技术要求国际协调会 (International Conference on Harmonization, ICH)的有机溶剂残留量 指导原则[9],采用毛细管气相色谱法对样品中的残留 溶剂进行检查并进行方法学研究。

1 仪器与试药

- 1.1 仪器 岛津 GC-2010 气相色谱仪[配置氢火焰离子化检测器(FID)], GC solution 工作站(日本SHIMADZU公司); XP105 电子天平(上海梅特勒-托利多公司,感量:0.01 mg/0.1 mg)。
- 1.2 药品和试剂 甲磺酸伊马替尼原料药(正大天晴药业集团股份有限公司,批号:090401,090402,090403);石油醚($60\sim90$ °C)、乙酸乙酯、乙醇和吡啶均为分析纯,N,N-二甲基甲酰胺(DMF)为色谱纯,实验用水为纯化水。

2 方法与结果


- 2.1 色谱条件 色谱柱: DB-WAX 毛细管柱(30 m× 0.53 mm,1.0 μ m);柱温: 初温 60 \mathbb{C} (保持 3 min),以每分钟 10 \mathbb{C} 升温至 70 \mathbb{C} (保持 1 min),再以每分钟 25 \mathbb{C} 升温至 150 \mathbb{C} (保持 5 min);进样口温度 180 \mathbb{C} ; 检测器温度 200 \mathbb{C} ;载气: 氮气;流速 5 mL·min⁻¹;分流比 1:1;进样量 1.0 μ L。
- 2.2 溶液的配制
- 2.2.1 各溶剂储备液的配制 取石油醚(60~90℃)

收稿日期 2016-04-29 修回日期 2016-07-05 基金项目 *国家科技重大专项(2013ZX09202005)

作者简介 王善春(1967-),男,江苏连云港人,研究员,高级工程师,硕士,从事药物质量研究工作。电话:025-8568587,E-mail;wsc@cttq.com。

通信作者 李慧(1989-),女,山东威海人,硕士,从事药物质量标准研究工作。电话:025-68551558, E-mail:cpu_lihui@126.com。

- 约 25 mg、乙酸乙酯约 25 mg、乙醇约 25 mg 和吡啶约 1.0 mg,精密称定,分别置 20 mL 量瓶中,加 DMF 溶解并稀释至刻度,摇匀,即得石油醚、乙酸乙酯、乙醇和吡啶储备液。
- 2.2.2 对照品溶液的配制 精密量取石油醚、乙酸乙酯、乙醇和吡啶储备液各 5 mL,置同一 25 mL 量瓶中,加 DMF 稀释至刻度,摇匀,即可。
- 2.2.3 供试品溶液的配制 取甲磺酸伊马替尼原料药(批号:090401)约0.1g,精密称定,置2mL量瓶中,加入适量DMF,置热水中震荡溶解,放冷,加DMF稀释至刻度,摇匀,即可。
- 2.3 各溶剂的色谱定位 精密量取"2.2.1"项下各溶剂的储备液适量,按"2.1"项下色谱条件,分别进样测定,记录色谱图,确定其保留时间。结果显示,在该色谱条件下,石油醚、乙酸乙酯、乙醇和吡啶的保留时间分别为1.186~1.747,2.578,3.122及7.026 min。
- 2.4 系统适应性实验 供试液(一):空白溶剂 DMF; 供试液(二):"2.2.2"项下的对照品溶液;供试液(三): "2.2.3"项下的供试品溶液;供试液(四):取供试品(批号:090401)约 0.1 g,精密称定,置 2 mL 量瓶中,加入适量对照品溶液,置热水中震荡溶解,放冷,加对照品溶液稀释至刻度,摇匀,即可。分别量取上述溶液各 1 μL,按"2.1"项下色谱条件,分别进样测定,记录色谱图。结果表明,混合对照品溶液中各溶剂的理论板数均大于5000,各相邻峰的分离度均大于1.5,均能完全分离,且溶剂 DMF 对待测溶剂和样品均无干扰,样品中的杂质峰也不干扰待测溶剂峰出峰。见图 1。
- **2.5** 耐用性实验 精密量取"2.2.2"项对照品溶液 1 μL,注入气相色谱仪,分别按下述色谱条件进行分析。
- 2.5.1 ZB-WAX 毛细管色谱柱(30 m×0.32 mm, 1.0 μ m);初始温度 60 \mathbb{C} (保持 3 min),以每分钟10 \mathbb{C} 升温至 70 \mathbb{C} (保持 1 min),再以每分钟 25 \mathbb{C} 升温至 150 \mathbb{C} (保持 5 min);进样口温度 180 \mathbb{C} ;检测器温度 200 \mathbb{C} ;流速 1.5 mL·min⁻¹;分流比 10:1。
- **2.5.2** DB-WAX 毛细管色谱柱(30 m×0.53 mm, 1.0 μ m);初始温度50 ℃(保持3 min),以每分钟12 ℃ 升温至70 ℃(保持1 min),再以每分钟25 ℃升温至150 ℃(保持5 min);进样口温度180 ℃;检测器温度200 ℃;流速5 mL·min⁻¹;分流比1:1。
- 2.5.3 DB-WAX 毛细管色谱柱(30 m×0.53 mm, 0.25 μ m);初始温度 50 $^{\circ}$ C(保持 3 min),以每分钟 10 $^{\circ}$ T升温至 70 $^{\circ}$ C(保持 1 min),再以每分钟 25 $^{\circ}$ T升温至150 $^{\circ}$ C(保持 5 min);进样口温度 180 $^{\circ}$ C;检测器

A.空白溶剂:B.对照品溶液:C.供试品溶液:D.供试品+对照品溶液:1.石油醚:2.乙酸乙酯:3.乙醇:4.吡啶

图 1 4 种溶液气相色谱图

A.blank solution; B.control solution; C.test solution; D.control solution and test solution; 1.petroleum ether; 2.ethyl acetate; 3.ethanol; 4. pyridine

Fig.1 GC chromatogram of four kinds of solution

温度200 ℃;流速 5 mL·min⁻¹;分流比 5:1。

2.5.4 DB-WAX 毛细管色谱柱(30 m×0.53 mm, 1.0 μ m);初始温度60 ℃(保持3 min),以每分钟10 ℃ 升温至70 ℃(保持1 min),再以每分钟25 ℃升温至150 ℃(保持5 min);进样口温度150 ℃;检测器温度180 ℃;流速5 mL·min⁻¹;分流比1:1。

结果表明,当本色谱条件中的初始温度、载气流速、分流比、进样口及检测器温度、不同品牌色谱柱等参数发生微小变化时,待测溶剂的理论板数均大于5000,各相邻峰的分离度均大于1.5,能够通过所设计的系统适用性实验。

2.6 线性与范围考察 取石油醚(60~90℃)、乙酸乙酯、乙醇、吡啶各适量,精密称定,分别加入 DMF 溶解并定量稀释,制成每 1 mL 中约含石油醚、乙酸乙酯、乙醇各 1.25 mg、吡啶 0.05 mg 的混合溶液,作为对照品储备液,精密量取储备液 0.5,1.0,2.0,3.0,4.0 mL,分别置于 10 mL 量瓶中,加 DMF 稀释至刻度,摇匀,按"2.1"项色谱条件,分别进样测定,记录色谱图,测得线性与范围实验结果见表 1。

表 1 4 种溶剂的回归方程与线性范围

Tab. 1 Regression equations and linear ranges of four solvents n=5

अंद्र नेत	同山土和	线性范围/	
溶剂	回归方程	$(\mu g\boldsymbol{\cdot} mL^{-1})$	r
石油醚	A=7 499.8C-46 245	61.73~493.82	0.999 9
乙酸乙酯	A = 4 382.9C - 37 006	62.77~502.15	0.999 9
乙醇	<i>A</i> = 5 171.2 <i>C</i> -41 741	62.22~497.79	0.999 9
吡啶	A=8 403.6C+4 898.7	2.52~20.16	0.999 8

2.7 检测限与定量限 取"2.2.2"项对照品溶液适量,加 DMF 逐级稀释后,按"2.1"项下色谱条件,进样测定。结果,按信噪比为 3:1,计算得石油醚、乙酸乙

酯、乙醇和吡啶的检测限分别为 0.58, 0.42, 0.18, 0.61 ng;按信噪比为 10:1,计算得石油醚、乙酸乙酯、乙醇和吡啶的定量限分别为 1.8, 2.1, 0.5, 2.5 ng。

- 2.8 对照品溶液进样精密度 量取"2.2.2"项下的对照品溶液适量,按"2.1"项下色谱条件,连续进样 5 次,结果测得,石油醚、乙酸乙酯、乙醇和吡啶的峰面积的RSD分别为 1.9%,0.7%,0.7%和 0.4%(n=5),结果表明精密度良好。
- 2.9 加样回收率实验 取供试品(批号:090401)约50 mg,平行5份,精密称定,分别置2 mL量瓶中,加入对照品溶液溶解并稀释至刻度,置热水中振摇溶解,量取溶液适量,按"2.1"项下色谱条件,进样测定,计算回收率。结果石油醚、乙酸乙酯、乙醇和吡啶的平均回收率依次为88.7%,97.7%,100.4%,99.6%,RSD依次为0.89%,041%,0.32%,1.93%。平均回收率为88.7%,RSD均小于2.0%。该测定方法回收率良好,方法可行。见表2。
- 2.10 样品测定 取甲磺酸伊马替尼原料药 3 批,照 "2.2.3"项下方法制备供试品溶液,按"2.1"项下色谱条件进行测定,记录色谱图,按外标法以峰面积计算各有机溶剂的残留量,在对该 3 批样品的检查中,石油醚、乙酸乙酯、吡啶均未检出,乙醇均有检出,但均小于《中华人民共和国药典》限度。见表 3。

3 讨论

- 3.1 溶剂的选择 甲磺酸伊马替尼易溶于水,以水为溶剂时,发现石油醚和乙酸乙酯不溶,而且水直接进样对毛细管柱损伤较大,因此考虑选用有机溶剂。实验结果显示,DMF可以很好地溶解甲磺酸伊马替尼和 4种有机残留溶剂,且与各有机溶剂分离度良好,不影响有机溶剂残留量的测定,故最终选择 DMF 作为溶剂。
- 3.2 色谱柱的选择 在实验过程中,笔者比较了 2 种不同极性的色谱柱:中等极性的 50%苯基-50%二甲基

表 2 石油醚、乙酸乙酯、乙醇、吡啶回收率实验

Tab.2 Results of recovery test on petroleum ether, ethyl acetate, ethanol and pyridine

,	1.0			
溶剂	原有量	加入量	测得量	回收率/
		μg		%
石油醚	未检出	493.82	439.53	89.01
	未检出	493.82	437.46	88.59
	未检出	493.82	434.56	88.00
	未检出	493.82	434.19	87.92
	未检出	493.82	443.68	89.85
乙酸乙酯	未检出	502.16	491.34	97.85
	未检出	502.16	490.04	97.59
	未检出	502.16	490.14	97.61
	未检出	502.16	488.21	97.22
	未检出	502.16	493.65	98.31
乙醇	76.8	497.78	576.99	100.48
	76.2	497.78	575.55	100.32
	76.2	497.78	576.72	100.55
	76.5	497.78	573.37	99.82
	76.5	497.78	577.24	100.60
吡啶	未检出	20.16	20.17	100.05
	未检出	20.16	20.01	99.26
	未检出	20.16	20.06	99.50
	未检出	20.16	19.56	97.02
	未检出	20.16	20.64	102.38

表 3 3 批次样品中有机溶剂残留量检查结果

Tab.3 Determination results of organic solvent residues in three batches of samples %

批号	石油醚	乙酸乙酯	乙醇	吡啶
090401	_	_	0.16	_
090402	_	_	0.16	_
090403	_	_	0.16	_
限度	0.029	0.5	0.5	0.2

[&]quot;一"表示未检出

聚硅氧烷毛细管柱 DB-17 和强极性的聚乙二醇毛细管柱 DB-WAX。结果显示,强极性柱对乙酸乙酯和乙醇峰的分离度优于中等极性柱,DM-WAX 色谱柱很好地将 5 种有机溶剂完全分离,有机溶剂按照极性顺序出

峰且峰形对称美观。所以,确定选用毛细管柱(30 m× 0.53 mm,1.0 μm)对甲磺酸伊马替尼中残留溶剂进行 检测。

3.3 柱温的选择 由于各有机溶剂之间的沸点差别比较大,采用程序升温可以缩短分析时间,提高检测效率。考虑到石油醚、乙酸乙酯、乙醇沸点较为相近,故将初始柱温定为 $60 \, ^{\circ}$ 、维持 $3 \, \text{min}$,使 $3 \, ^{\circ}$ 个溶剂峰完全分离,然后再以 $10 \, ^{\circ}$ · min $^{-1}$ 升温至 $150 \, ^{\circ}$ 、维持 $5 \, \text{min}$,使 DMF 尽快出峰,结果各溶剂峰达到有效分离。

本研究建立的气相色谱法可同时测定 4 种有机溶剂残留量,检测速度快、灵敏,操作简便,结果准确、可靠、重复性好。该方法切实可行,可以用于本品残留溶剂的测定,同时也可为相关工作者提供一定的参考。

参考文献

- [1] BUCHDUNGER E, O'REILLY T, WOOD J. Pharmacology of imatinib (STI571) [J]. Eur J Cancer, 2002, 38(5): S28-S36.
- [2] 丁倩倩,陈勤奋.甲磺酸伊马替尼的临床应用[J].上海医药,2013,34(3):5-8.
- [3] 谢美芬,陈益乐,姜琳琳,等.毛细管气相色谱法测定伊立 替康原料药中的有机溶剂残留[J].复旦学报(医学版), 2010,37(4):464-467.
- [4] PAVLOVIC A D, IGNJATOVIC L M, POPOV S Z, et al. Application of gas chromatography analysis to quality control of residual organic solvents in clopidogrel bisulfate [J]. J Serb Chem Soc, 2014, 79(10):1279-1293.
- [5] 张佳莉,顾冬飞,武维新,等.毛细管气相色谱法同时测定 盐酸普萘洛尔原料药中5种有机溶剂残留量[J].中国药房,2015,26(6):831-833.
- [6] 郭旭光,郑子栋,郭毅.毛细管气相色谱法测定达沙替尼原料药中6种残留溶剂[J].医药导报,2015,34(8):1081-1083.
- [7] 杨丽霞,张素娟,张旭,等.吉非替尼中残留溶剂的 GC 法测定[J].中国医药工业杂志,2015,46(11);1232-1235.
- [8] 国家药典委员会.中华人民共和国药典(四部)[M].北京:中国医药科技出版社,2015:通则0861,105-109.
- [9] 陈立亚,于宝珠,赵慧芳.ICH 指导原则与各国现行药典药品的残留溶剂分析方法概述[J].中国药事,2005,19(9):542-543.

[&]quot;-" means undetected