中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(1): 22-27
doi: 10.3870/j.issn.1004-0781.2017.01.005
S-烯丙基半胱氨酸对高脂血症模型大鼠一氧化氮水平及其抗氧化酶活性的影响*
Effects of S-allylcysteine on Nitric Oxide Production and Antioxidant Enzyme Activities in Hyperlipidemic Model Rats
严婧婷1,2,, 张容1, 徐诗强1, 高成志1, 杜晶1, 胡霞敏1,

摘要:

目的 探讨S-烯丙基半胱氨酸(SAC)对高脂血症大鼠一氧化氮(NO)水平和抗氧化酶活性的影响。方法 雄性Wistar大鼠42只,随机分成7组,各6只:正常对照组(普通饲料)、模型对照组(高脂饲料)和SAC小、中、大剂量组(高脂饲料+25,50,100 mg·kg-1SAC),连续给药4周后处死;L-精氨酸组(普通饲料+L-精氨酸20 mg·kg-1)和 L-精氨酸+SAC组(普通饲料+ 50 mg·kg-1 SAC+20 mg·kg-1L-精氨酸)于给药后4 h处死。测定血清、肝脏和肾脏中NO水平、一氧化氮合酶(NOS)的活性、抗氧化指标和血清L-精氨酸含量。结果 与模型对照组比较,SAC治疗组血清、肝脏和肾脏中NOS活性显著降低(P<0.05),SAC小、中、大剂量组血清中L-精氨酸浓度分别为(8.25±1.15), (7.76±1.24) 和 (7.22±1.64) μg·mL-1,与模型对照组比较均下降。与L-精氨酸组比较,L-精氨酸+SAC组血清、肝脏和肾脏中NOS活性均下降。SAC大剂量组血清和肝脏的超氧化物歧化酶(SOD)活性显著增加,谷胱甘肽(GSH)水平上升(P<0.01),丙二醛(MDA)水平降低。结论 SAC可以通过降低NOS活性和L-精氨酸浓度来抑制NO的产生,发挥抗氧化活性。

关键词: -烯丙基半胱氨酸 ; 高脂血症 ; 一氧化氮 ; 抗氧化

Abstract:

Objective To investigate the effects of S-allylcysteine (SAC), on nitric oxide (NO) production and antioxidant enzyme activities in hyperlipidemic rats. Methods Male Wistar rats were randomly divided into seven groups. Five groups including normal control group (normal diet), model control group (high-fat diet, HFD) and SAC low,medium,high treated group (high-fat diet+25,50,100 mg·kg-1SAC) were sacrificed after 4 weeks dosing,while the other two groups including L-arginine group (normal diet+ 20 mg·kg-1 L-arginine) and SAC+L-arginine group (50 mg·kg-1 SAC+20 mg·kg-1 L-arginine) were sacrificed at 4 h after dosing. The serum, livers and kidneys were collected. The levels of NO, the activities of nitric oxide synthase (NOS), antioxidant enzymes in vivo and L-arginine contents in serum were determined.Results Comparing with model control group, the activities of total NOS in serum and liver were significantly reduced in SAC-treated groups (P<0.05). The level of L-arginine in SAC-treated groups was (8.25±1.15), (7.76±1.24) and (7.22±1.64) μg·mL-1, respectively. Compared with model control group, the level of L-arginine were significantly reduced in SAC-treated groups (P<0.05). Comparing with L-arginine group, the activities of total NOS (T-NOS) and iNOS were reduced in SAC+L-arginine group. SAC treatment (100 mg·kg-1) significantly increased the activities of superoxide dismutase (SOD) (P<0.01) and the level of glutathione (GSH) (P<0.01), and decreased the level of malondialdehyde (MDA) in serum and liver of hyperlipidemic rats. Conclusion These data suggest that SAC inhibits the NO production by reducing iNOS activity, arginine concentration and exhibited antioxidant activity, which may play a pharmacologically important role in protection from oxidative injury and pathogenesis of atherosclerosis.

Key words: -allylcysteine ; Hyperlipidemic ; Nitric oxide ; Antioxidants

一氧化氮(NO)是机体内重要的信号分子 [1],它对体内的生理学过程产生重要的影响[2-3]L-精氨酸在NO合成酶(NOS)的催化下转变为瓜氨酸和NO[4]。研究证实,内皮细胞产生的NO能影响动脉粥样硬化和炎症的关键过程[5]。在动脉粥样硬化动物模型实验中,对L-精氨酸/NO通道的抑制作用,可加快内皮损伤进程[6]。另一方面,动脉粥样硬化的炎症环境导致大量NO和活性氧产生[7]。因此,NO生理学方面的作用具双向性,其在相关组织中浓度过高或过低都可导致疾病[8]。高脂血症常与血管内皮功能紊乱密切相关,是亚临床动脉粥样硬化疾病和冠心病的先兆。增加高脂血症血管氧化应激可损伤内皮功能,导致动脉粥样硬化。流行病学证据表明,增加饮食内具抗氧化作用的成分可降低冠心病危险[9]

S-烯丙基半胱氨酸(S-allylcysteine, SAC)性质稳定,在光、酸、碱和高温条件下未见新化合物产生。体内外研究表明,SAC具有抗氧化活性[10],通过抑制神经因子-κB活化作用及诱生型NOS(iNOS)的表达降低NO的浓度[11]。笔者在本实验中研究SAC对高脂血症大鼠体内NO浓度和iNOS活性的影响。

1 材料与方法
1.1 实验动物

雄性Wistar大鼠,无特定病原体(SPF)级,体质量180~200 g,购于湖北省疾病预防控制中心动物实验中心,动物生产许可证号:SCXK(鄂)2008-0005,合格证号:42000600000738。饲养条件:室温(22±1) ℃,相对湿度58%。给予标准饮食和饮水,于实验前12 h开始禁食。

1.2 药品与试剂

SAC:淡黄色结晶,含量>98%,武汉科技大学实验室合成。丙基硫氧嘧啶(上海复星朝辉药业有限公司)。胆固醇、去氧胆酸钠(武汉凌飞科技有限公司)。高脂饲料组成:胆固醇2%,去氧胆酸钠0.3%,猪油10%,丙基硫氧嘧啶0.2%,基础饲料87.5%。邻苯二甲醛、2-巯基乙醇(Acros Organics,New Jersey, USA,含量:99%)。NO、NOS、丙二醛(MDA)、谷胱甘肽(GSH)、谷胱甘肽过氧化物(GSH-Px)酶试剂盒(南京建成生物公司研究所,批号:20130104)。总胆固醇(TC)试剂盒(南京建成生物公司研究所,批号:20130115)。三酰甘油(TG)、超氧化物歧化酶(SOD)、过氧化氢酶(catalase, CAT)试剂盒(南京建成生物公司研究所,批号:20130112)。L-精氨酸(上海复星朝辉药业有限公司,含量≥98%)。乙腈、甲醇均为色谱纯(山东禹王实业有限公司)。水:高纯水,去离子水经重蒸。其他所有的试剂和溶剂购于商业公司,级别为分析纯或色谱纯。SAC溶于无菌0.9%氯化钠溶液。

1.3 仪器

LC-5A高效液相色谱仪(日本岛津公司)配有RF-530荧光检测器,SIL-A型手动进样器,CTO-2A型柱恒温箱,C-R3A型数据处理器。LDR48.4C高速冷冻离心机(北京医用离心机厂)。恒温水浴箱(北京医疗器械厂)。紫外分光光度计(UV-260型,日本岛津公司)。

1.4 方法

1.4.1 实验设计 雄性大鼠实验全程自由进食和饮水。所有大鼠每天观察2次并称质量,以评价其健康状况。适应环境1周后,将大鼠按随机分组法分成7组,每组6只:正常对照组正常饮食并灌服0.9% 氯化钠溶液;模型对照组高脂饮食并灌服0.9%氯化钠溶液;SAC小剂量组高脂饮食并灌服SAC 25 mg·kg-1;SAC中剂量组高脂饮食并灌服SAC 50 mg·kg-1;SAC大剂量组高脂饮食并灌服SAC 100 mg·kg-1。5组大鼠经4周饲养处理,禁食12 h后处死;L-精氨酸组每只大鼠腹腔单剂量注射L-精氨酸20 mg·kg-1,并在4 h后处死。L-精氨酸+SAC组每只大鼠灌服50 mg·kg-1SAC和腹腔单剂量注射L-精氨酸20 mg·kg-1,4 h后处死。摘取每只大鼠的肝脏和肾脏并称质量。采集各受试大鼠血液,立即分离血清。每个器官取组织0.2 g。加冰冷0.9%氯化钠溶液2 mL置于冰块上进行匀浆, 3 000×g离心10 min,收集上清液。肝脏和肾脏的组织匀浆上清液的蛋白浓度以牛血清蛋白为标准物,通过Bradford染料结合法测得。

1.4.2 脂质测定 血清中TC使用CHOD-PAP试剂酶法测定,TG使用GPO-PAP酶试剂法测定。肝脏中TC和TG均以异丙醇制备10%肝组织匀浆,4 ℃冰箱放置2 d后,4 000×g离心5 min,取上清液按酶比色法测定。具体操作及计算参照试剂盒说明进行。

1.4.3 NO浓度的测定 通过检测硝酸盐和亚硝酸盐的含量来测定NO浓度。取上清液100 μL加入硝酸还原酶400 μL,37 ℃孵育60 min后加入格里斯试剂(1%对氨基苯磺酸 和0.1%盐酸萘乙二胺溶于2.5% 磷酸) 300 μL,继续室温孵育10 min[12]。分光光度计测量亚硝酸盐产物吸光度,通过与亚硝酸钠标准溶液对照算出亚硝酸盐浓度。大鼠血清、肝脏和肾脏组织NO浓度依据试剂盒说明书进行测定和计算。所有样品重复测量3次。

1.4.4 MDA水平的测定 MDA作为脂质过氧化的指标,在血清、肾脏和肝脏中的水平通过YAGI等[13]介绍的方法来进行测定。该方法的原理是通过与硫代巴比妥酸反应生产红色反应物MDA,此红色物质在波长λ=532 nm处有最大吸收。

1.4.5 血清中维生素C(Vc)的测定 高效液相色谱(HPLC) 法测定血清中Vc浓度[14]

1.4.6 血清L-精氨酸的分析 血清样品解冻后,取样100 μL, 加甲醇400 μL充分混匀,3 000×g离心15 min。取上清液经孔径0.45 μm滤膜滤过。取续滤液100 μL,加入邻苯二甲醛(O-phthalaldehyde ,OPA)衍生液50 μL,混合均匀,于室温下避光放置2 min。立即取10 μL进入色谱系统。OPA 衍生液的制备方法如下:精密称取OPA 30 mg,甲醇5 mL溶解后,加入0.01 mol·L-1硼砂缓冲液(pH值9.2) 5 mL和2-巯基乙醇50 μL。OPA衍生液应避光4 ℃保存并每5 d重新配制。HPLC条件:不锈钢Hypersil ODS2柱(5 μm, 4.6 mm×250 mm,大连依利特仪器公司)。流动相:50 mmol·L-1醋酸盐缓冲液 (pH值 6.8 )-甲醇-乙腈(50∶7∶10);柱温:35 ℃;流速:0.8 mL·min-1L-精氨酸采用荧光检测,激发波长和发射波长分别为340和455 nm[15]

1.4.7 其他生化指标 按试剂盒说明书检测血清、肝脏和肾脏中SOD、GSH-Px、CAT、总NOS (T-NOS )和iNOS活性及血清GSH水平。

1.4.8 统计学方法 采用SPSS 20.0版软件,计量资料以均数±标准差( x ̅ ±s)表示,采用单因素方差分析,以P<0.05为差异有统计学意义。

2 结果
2.1 SAC对在高脂血症大鼠体内NO水平、NOS活性及L-精氨酸浓度的影响

图1。模型对照组大鼠血清、肝脏和肾脏组织中NO的浓度比正常对照组分别增加63%,15%,2%。SAC中、大剂量组大鼠肝脏中NO的浓度分别为(0.23±0.08),(0.20±0.04) μmol·g-1;肾脏中NO的浓度分别为(0.35±0.12),(0.33±0.09) μmol·g-1,与模型对照组比较,均明显下降(t=2.419~5.445,均P<0.05)。表明高脂血症血清和组织中NO的浓度明显增加,而SAC则能降低NO的产生。与正常对照组比较,模型对照组血清、肝脏和肾脏中T-NOS和iNOS的活性为同步增加;与模型对照组比较,SAC小、中、大剂量组组中血清、肝脏、肾脏T-NOS 和 iNOS的活性随着药物剂量的升高而逐渐下降。模型对照组血清中L-精氨酸的浓度为(10.51±2.00) μg·mL-1,与正常对照组比较,明显降低;SAC小、中、大剂量组与模型对照组比较,血清中L-精氨酸的浓度显著下降。表明SAC能抑制高脂血症大鼠体内T-NOS和iNOS活性,并能够降低血清中L-精氨酸的浓度(图2)。

图1 5组大鼠血清、肝脏和肾脏NO水平、NOS活性比较 (x¯±s,n=6)
与正常对照组比较,*1P<0.01,*4P<0.05;与模型对照组比较,*2P<0.05, *3P<0.01

Fig.1 Comparison of NO level and NOS activity of the serum, liver and kidney among five groups of rats (x¯±s,n=6)
Compared with normal control group, *1P<0.01,*4P<0.05; compared with model control group, *2P<0.05, *3P<0.01

图2 5组大鼠血清L-精氨酸浓度比较 (x¯±s,n=6)
与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05, *3P<0.01

Fig.2 Comparison of the serum concentration of L-arginine among five groups of rats (x¯±s,n=6)
Compared with normalcontrol group, *1P<0.05;compared with model control group, *2P<0.05, *3P<0.01

2.2 SAC对正常大鼠体内L-精氨酸诱导NO浓度和iNOS活性的影响

L-精氨酸组大鼠血清、肝脏和肾脏组织中NO浓度分别为(197.00±8.12) μmol·L-1,(0.84±0.09)和(0.90± 0.15) μmol·g-1。与L-精氨酸组比较,L-精氨酸 + SAC组血清、肝脏和肾脏中NO浓度显著下降(图 3)。表明SAC能抑制经L-精氨酸刺激产生的NO浓度。与正常对照组比较,L-精氨酸租大鼠血清、肝脏和肾脏中T-NOS 和 iNOS活性同步增加,经SAC治疗后,血清、肝脏和肾脏中T-NOS 和 iNOS活性同步下降,表明SAC 通过抑制T-NOS 和 iNOS的活性而降低NO浓度。

图3 3组大鼠血清、肝脏和肾脏NO水平、NOS活性比较 (x¯±s,n=6)
与正常对照组比较,*1P<0.01,*4P<0.05;与L-精氨酸组比较,*2P<0.01, *3P<0.05

Fig.3 Comparison of NO level and NOS activity of the serum, liver and kidney among three groups of rats (x¯±s,n=6)
Compared with normal control group, *1P<0.01,*4P<0.05; compared with L-arginine group, *2P<0.01, *3P<0.05

2.3 SOD、CAT和GSH-Px活性及TC、TG、GSH和MDA水平

与正常对照组比较,模型对照组大鼠的血清TC和TG水平分别增加了2.5倍和1.5 倍。给予SAC 治疗后血清TC 和TG 水平呈剂量依赖性降低,且SAC中剂量组和大剂量组中TG水平能趋于正常水平(表1)。与正常对照组比较,模型对照组大鼠MDA水平上升;与模型对照组比较,SAC治疗组血清、肝脏、肾脏的MDA水平显著降低,且呈剂量依赖性。与正常对照组比较,模型对照组中血清,肝脏、肾脏中SOD、 CAT活性及GSH含量显著降低,但血清中GSH-Px活性增加(表2,3)。与模型对照组比较,SAC治疗组血清、肝脏、肾脏SOD 活性升高,且呈剂量依赖性。

表1 5组大鼠血清中TC、TG、Vc等浓度与 SOD、CAT、GSH-Px活性比较
Tab.1 Comparison of the serum concentration of TC,TG and Vc as well as the activity of SOD, CAT and GSH-Px among five groups of rats x¯±s,n=6
组别 TC TG Vc/
(μg·mL-1)
MDA/
(μmol·L-1)
GSH/
(mg·L-1)
SOD CAT GSH-Px/
(U·mL-1·min-1)
mmol·L-1 (U·mL-1)
正常对照组 1.84±0.19 0.88±0.10 3.70±0.34 5.82±0.32 407.03±31.41 263.47±14.49 10.19±1.58 410.48±31.30
模型对照组 4.31±0.84*1 1.17±0.17*1 3.30±0.48 8.01±0.70*1 328.73±31.15*1 213.38±27.29*1 6.06±1.09*2 709.01±45.64*1
SAC
小剂量组 2.79±0.48*2 1.05±0.17 4.16±0.11*2 6.47±0.61*2 379.55±20.18*2 239.44±8.74 7.77±2.38 664.75±40.09
中剂量组 2.48±0.28*2 0.85±0.14*2 4.37±0.21*2 5.81±0.51*2 400.51±22.33*2 250.20±9.08*3 8.46±1.86*3 632.18±30.75*2
大剂量组 2.33±0.22*2 0.88±0.16*3 4.52±0.32*2 5.22±0.46*2 417.70±16.70*2 263.04±11.06*2 8.50±0.92*3 663.55±33.94*2

Compared with normal control group, *1P<0.01;compared with model control group, *2P<0.01, *3P<0.05

与正常对照组比较,*1P<0.01;与模型对照组比较, *2P<0.01, *3P<0.05

表1 5组大鼠血清中TC、TG、Vc等浓度与 SOD、CAT、GSH-Px活性比较

Tab.1 Comparison of the serum concentration of TC,TG and Vc as well as the activity of SOD, CAT and GSH-Px among five groups of rats x¯±s,n=6

表2 5组大鼠肝脏中MDA、GSH水平与 SOD、CAT、GSH-Px活性比较
Tab.2 Comparison of the level of MDA, GSH and the activity of SOD,CAT and GSH-Px in liver among five groups of rats x¯±s,n=6
组别 MDA/(μmol·g-1) GSH/(mg·g-1) SOD GSH-Px CAT
(U·mg-1)
正常对照组 2.06±0.33 29.94±1.81 273.14±26.16 34.47±4.10 29.84±4.57
模型对照组 3.97±0.55*1 20.59±0.46*1 185.74±16.50*1 25.86±3.33*1 21.03±2.63*1
SAC
小剂量组 3.39±0.99 21.06±1.63 192.81±12.67 27.05±2.10 22.27±2.40
中剂量组 2.68±0.26*2 25.92±1.39*2 208.15±4.92*3 28.54±2.84 24.18±1.67
大剂量组 2.28±0.33*2 27.82±1.28*2 218.76±13.33*3 31.79±3.66*3 24.37±3.12

Compared with normal control group, *1P<0.01;compared with model control group, *2P<0.01, *3P<0.05

与正常对照组比较,*1P<0.01;与模型对照组比较, *2P<0.01, *3 P<0.05

表2 5组大鼠肝脏中MDA、GSH水平与 SOD、CAT、GSH-Px活性比较

Tab.2 Comparison of the level of MDA, GSH and the activity of SOD,CAT and GSH-Px in liver among five groups of rats x¯±s,n=6

表3 5组大鼠肾脏中MDA、GSH水平与 SOD、CAT、GSH-Px活性比较
Tab.3 Comparison of the level of MDA, GSH and the activity of SOD,CAT and GSH-Px in kidneys among five groups of rats x¯±s,n=6
组别 MDA/
(μmol·g-1)
GSH/
(mg·g-1)
SOD GSH-Px CAT
(U·mg-1)
正常对照组 1.58±0.22 35.70±4.55 222.88±20.64 27.99±5.73 25.89±4.19
模型对照组 2.03±0.11*1 27.91±2.11*1 164.33±24.09*1 22.30±1.53*2 18.22±4.74*2
SAC
小剂量组 1.61±0.37*3 24.00±4.14 176.38±31.37 22.54±3.15 21.03±1.68
中剂量组 1.55±0.28*4 27.09±4.22 182.68±37.51 22.34±3.68 22.12±4.40
大剂量组 1.46±0.11*4 32.93±2.52*4 208.46±11.73*4 25.86±4.76 23.71±4.83

Compared with normal control group,*1P<0.01, *2P<0.05;compared with model control group, *3P<0.05, *4P<0.01

与正常对照组比较,*1P<0.01, *2P<0.05;与模型对照组比较, *3P<0.05, *4P<0.01

表3 5组大鼠肾脏中MDA、GSH水平与 SOD、CAT、GSH-Px活性比较

Tab.3 Comparison of the level of MDA, GSH and the activity of SOD,CAT and GSH-Px in kidneys among five groups of rats x¯±s,n=6

3 讨论

高胆固醇血症与损伤内皮NO产生密切相关,使内皮NOS(eNOS)储量和活性发生改变而导致形成早期的动脉粥样硬化病变[16]。FERSON等[17]报道,高胆固醇血症通过促进抑制复合物eNOS与溃穴的形成来降低NO浓度。高脂饮食通过诱导iNOS mRNA在肝脏的表达而增加血浆NO浓度,SAC可抑制由脂多糖和干扰素γ刺激RAW264.7细胞中NO的产生。

本研究结果显示,与正常对照组比较,喂养高脂饮食的模型对照组中NO浓度增加,说明高脂饮食能通过上调T-NOS和 iNOS 活性而增加血清、肝脏和肾脏组织中NO的浓度。而SAC治疗组中NO浓度逐渐下降,说明SAC通过抑制高脂血症大鼠体内T-NOS和iNOS活性而降低血清、肝脏和肾脏组织中NO的浓度。

前期实验证实SAC可以降低高血脂大鼠的NO浓度,其机制可能是SAC降低iNOS的活性和L-精氨酸的浓度。NO由NOS催化L-精氨酸末端瓜氨酸的氮原子氧化作用而合成。脂多糖能诱导产生iNOS,并由此产生大量的NO。通过检测大鼠血清、肝脏和肾脏中T-NOS和iNOS活性,以便阐明SAC在体内抑制由脂多糖诱导产生NO的机制。本研究中,L-精氨酸组经脂多糖诱导后,血清、肝脏以及肾脏中NO浓度以及T-NOS和iNOS活性明显增加,而给予SAC治疗后高脂血症大鼠血清L-精氨酸浓度和iNOS活性均有所下降。提示SAC能抑制正常大鼠血清、肝脏和肾脏中由L-精氨酸诱导产生的NO,其作用机制可能是降低T-NOS 和 iNOS 的活性。

抗氧化剂能防止氧化应激和通过清除氧自由基,保护NO并抑制氧化低密度脂蛋白的形成。抗氧化剂同样能增加eNOS活性。高胆固醇血症动物模型中eNOS的活性受到抑制,在体内和体外模型中SAC均能保护血管内皮细胞和肝细胞免受过氧化氢诱导的损伤,并显示出较强的抗氧化活性。本研究显示,模型对照组中高脂血症大鼠血清、肝脏和肾脏中SOD的活性和GSH的水平有所降低,而MDA的水平明显增加。SAC治疗组中SOD的活性和GSH的水平随浓度增高而增加,MDA水平则逐渐下降。同时,SAC能增加高脂血症大鼠血清中Vc浓度。

防治动脉粥样硬化是防治心脑血管病的根本措施。动脉粥样硬化的发病机制之一是内皮损伤,必然导致内皮功能失调,表现为NO产生减少。NO具有重要的生物功能,包括扩张血管、抗血小板聚集、抑制平滑肌细胞增殖等,而NOS是NO产生过程中的限速酶。因此NOS的活性及表达量直接影响NO的产量,同时NO合成与NOS底物L-精氨酸有关。笔者在本研究通过观察SAC对NO浓度的影响和NOS活性的抑制作用以及抗氧化活性,为阐明SAC预防动脉粥样硬化的形成提供了理论依据。

The authors have declared that no competing interests exist.

参考文献

[1] GUTIERREZ-ESCOBAR A J, ARENAS A F, VIILLORIAL-GUERRERO Y, et al. Toxoplasma gondii: molecular cloning and characterization of a nitric oxide synthase-like protein[J]. Exp Parasitol, 2008, 119(3): 358-363.
Toxoplasma gondii has a nitrite production and a putative nitric oxide synthase (NOS) motif genomic sequence. In order to demonstrate that this sequence is functional and could be involved in the metabolism of l -arginine derivatives, we constructed a baculovirus carrying the previously identified Toxoplasma NOS-like DNA sequence . The recombinant protein was expressed into insect Sf9 cells and his activity was tested in serial microplate colorimetric assays. The protein produced 21nmol/min/ml nitrites per microgram of protein and followed Michaelis–Menten kinetics, with a K m for l -arginine of 2.3mM. Furthermore, the optimal pH, temperature and incubation time for the recombinant Toxoplasma NOS-like protein were established. Toxoplasma NOS runs as a band of 11.6kDa on tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Our results indicate that the recombinant protein derived from the putative genomic sequence, at the chromosome 1b of T. gondii, is able to produce nitrites from l -arginine as substrate.
DOI:10.1016/j.exppara.2008.03.008      PMID:18439581      URL    
[本文引用:1]
[2] HUANG Q, HUANG C, ZHAO Y, et al.LPS-stimulated RAW264.7 macrophage CAT-2-mediated L-arginine uptake and nitric oxide biosynthesis is inhibited by omega fatty acid lipid emulsion[J]. J Surg Res, 2013, 179(1): e211-e217.
ABSTRACT Omega-3 fatty acid (ω-3 FA) lipid emulsion has been reported to inhibit nitric oxide (NO) production and alter inducible nitric oxide synthase (iNOS) protein expression in lipopolysaccharide (LPS)-stimulated murine macrophages. However, the role of cellular uptake of l-arginine and iNOS transcription in ω-3 FA emulsion-induced inhibition of NO has not been explored. In addition, cationic amino acid transporter-2 (CAT-2) can regulate iNOS activity. The effect of ω-3 FA emulsion on CAT-2 expression is unknown. In the present study, we hypothesized that ω-3 FA emulsion pretreatment would decrease the production of NO in LPS-stimulated macrophages and that this effect would occur through alterations in the cellular uptake of l-arginine and CAT-2 expression, in addition to iNOS expression.
DOI:10.1016/j.jss.2012.02.026      PMID:22504132      URL    
[本文引用:1]
[3] LI J, BILLIAR T R.Nitric oxide IV determinants of nitric oxide protection and toxicity in liver[J]. Am J Physiol, 1999, 276(5): G1069-G1073.
Whereas nitric (NO) produced by constitutive endothelial NO synthase is protective to the liver, NO produced by the () can be either toxic or protective depending on the conditions. The availability of selective inhibitors and lacking various isoforms made it possible to begin to elucidate the precise roles of NO in the liver. Under conditions of redox stress, induced NO contributes to hepatic damage. However, in acute inflammatory conditions associated with cytokine exposure, NO acts as a potent inhibitor of in the liver. Our current understanding of the mechanisms by which NO exerts both hepatoprotective and hepatotoxic actions is discussed in this themes article.
DOI:10.1046/j.1365-201X.1999.00525.x      PMID:10329995      URL    
[本文引用:1]
[4] RODRIGUEZ-RAMOS T, CARPIO Y, BOLIVAR J, et al.An inducible nitric oxide synthase (NOS) is expressed in hemocytes of the spiny lobster Panulirus argus: cloning, characterization and expression analysis[J]. Fish Shellfish Immunol, 2010, 29(3): 469-479.
Nitric oxide (NO) is a free radical gas involved in a variety of physiological processes in invertebrates, such as neuromodulation, muscle contraction and host defense. Surprisingly, little is known about the involvement of NO synthase (NOS) in the immune system of crustaceans. This work is focused on the study of the NOS gene of the spiny lobster Panulirus argus, a crustacean with commercial interest, and its relationship with the immune response to a microbial elicitor. A NOS full-length DNA was isolated from hemocytes by reverse transcription-polymerase chain reaction (RT-PCR) using degenerated primers. The open reading frame (ORF) encodes a protein of 1200 amino acids, with an estimated molecular mass of 135.9 kDa, which contains the conserved domains and binding motifs of NOS found in a variety of organisms. NOS gene expression in lobster gills, heart, stomach, digestive gland, abdominal muscle, gut and hemocytes was studied by Real Time quantitative PCR (Real Time qPCR). The expression was higher in hemocytes, heart and gills. In addition, when lobster hemocytes were exposed in vitro to Escherichia coli O55:B5 lipopolysaccharide (LPS), an increase in the NOS activity and also in the NOS gene expression evaluated by Real Time qPCR was observed, thus demonstrating the presence of an inducible crustacean NOS by a microbial elicitor of the immune response. The information is relevant in providing basic knowledge for further studies of crustacean defense mechanisms.
DOI:10.1016/j.fsi.2010.05.013      PMID:20580828      URL    
[本文引用:1]
[5] BULT H.Nitricoxide and atherosclerosis: possible implications for therapy[J]. Mol Med Today, 1996, 2(12): 510-518.
[本文引用:1]
[6] PERROTTA I, BRUNELLI E, SCIANGULA A, et al.Inducible and endothelial nitric oxide synthase expression in human atherogenesis: an immunohistochemical and ultrastructural study[J]. Cardiovasc Pathol, 2009, 18(6): 361-368.
Our data confirm and extend previous findings of a direct relationship between dysregulation of nitric oxide pathway and atherosclerosis, suggesting another possible mechanism by which nitric oxide synthase system abnormalities may promote vascular dysfunction during human atherogenesis. Changes in nitric oxide production might be the primary step in the development of atheroma.
DOI:10.1016/j.carpath.2008.08.005      PMID:18835789      Magsci     URL    
[本文引用:1]
[7] BUTTERY L D, SPRINGALL D R, CHESTER A H, et al.Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite[J]. Lab Invest, 1996, 75(1): 77-85. [本文引用:1]
[8] KIM J W, KANG K W, OH G T, et al.Induction of hepatic inducible nitric oxide synthase by cholesterol in vivo and in vitro[J]. Exp Mol Med, 2002, 34(2): 137-144.
Cholesterol-rich diet impairs endothelial NO synthase (eNOS) and enhances inducible NOS (iNOS) expression. In this study, we investigated effects of cholesterol on iNOS expression in high-fat-fed rat models, HepG2 and RAW264.7 cells. The high-fat diet increased the plasma total cholesterol level 6-7 fold and low-density lipoprotein cholesterol level (LDL-C) approximately 70 fold and slightly increased the level of lipid peroxidation as determined by thiobarbituric acid-reactive substance assay. The high-fat diet also increased plasma nitric oxide (NO) concentrations up to 5 fold, and induced iNOS mRNA expression in liver. The contractile responses of the endothelium-denuded thoracic aortic rings to phenylephrine were significantly damaged in high-fat-fed rats when assessed by organ chamber study. Treatment with estrogen for 4 days failed to reduce iNOS expressions as well as aortic contractility, although it improved lipid profiles. In cultured HepG2 or murine macrophage RAW264.7 cells, 3 days treatment with either 25-hydroxycholesterol or 7-ketocholesterol induced iNOS mRNA expression, as determined by RT-PCR. Our data suggested that the chronic exposure of hepatocytes and macrophage cells to high concentration of cholesterol or oxysterols may induce iNOS expression and subsequent synthesis of NO, which may be important in the pathogenesis of atherosclerosis.
DOI:10.1038/emm.2002.20      PMID:12085989      URL    
[本文引用:1]
[9] VAN DO VIJVER L P, KARDINAAL A F, GROBBEE D E, et al. Lipoprotein oxidation, antioxidants and cardiovascular risk: epidemiologic evidence[J]. Prostaglandins Leukot Essent Fatty Acids, 1997, 57(4/5): 479-487.
Abstract This review summarizes the scientific evidence for a possible role of antioxidants in the prevention of coronary heart disease (CHD). Dietary antioxidants include vitamin E, vitamin C and beta-carotene, whereas selenium is an integral part of the antioxidant enzyme glutathione peroxidase. Experimental studies suggest that the oxidation of low-density lipoproteins (LDL) in the vessel wall plays an important role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by antioxidant supplementation, at least in vitro. Epidemiological studies have not demonstrated unequivocally that a high intake of antioxidants leads to a decreased risk of CHD. Studies on dietary intake and serum levels of antioxidants do point in the direction of a preventive effect of antioxidants, whereas the results of intervention studies are less conclusive. Beta-carotene supplementation is not associated with any decrease in CHD; high doses of vitamin E may be beneficial, but results from large trials are to be awaited. General preventive measures based on antioxidant supplementation are not yet justifiable.
DOI:10.1016/S0952-3278(97)90432-4      PMID:9430400      URL    
[本文引用:1]
[10] SARAVANAN G, PONMURUGAN P.Attenuation of streptozotocin-induced alterations in acetylcholinesterase and antioxidant system by S-allylcysteine in rats[J]. Food Bioscience, 2013, 4(1): 31-37.
The present study was designed to investigate the effect of the administration of S-allylcysteine (SAC) (150聽mg/kg body weight for 45 days) on acetylcholinesterase (AChE) activity and antioxidant levels in the brain tissues of streptozotocin-induced diabetic rats. The levels of glucose, TBARS, hydroperoxide and acetylcholinesterase were increased significantly whereas the levels of plasma insulin, reduced glutathione, superoxide dismutase and catalase were decreased in experimental diabetic rats. Administration of SAC to diabetic rats reverted all these parameters. The effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. In conclusion, the present findings showed that treatment with SAC prevents the increase in AChE activity, lipid peroxidation, and consequently improves the antioxidant system in diabetic rats, indicating that this compound can be considered as possible therapeutics to be investigated in brain disorders associated with the diabetes.
DOI:10.1016/j.fbio.2013.08.003      URL    
[本文引用:1]
[11] KIM K M, CHUN S B, KOO M S, et al.Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allylcysteine[J]. Free Radic Biol Med, 2001, 30(7): 747-756.
Garlic has been used as a traditional medicine for prevention and treatment of cardiovascular diseases. However, the molecular mechanism of garlic鈥檚 pharmacological action has not been clearly elucidated. We examined here the effect of garlic extract and its major component, S-allyl cysteine (SAC), on nitric oxide (NO) production by macrophages and endothelial cells. The present study demonstrates that these reagents inhibited NO production through the suppression of iNOS mRNA and protein expression in the murine macrophage cell line RAW264.7, which had been stimulated with LPS and IFN纬. The garlic extract also inhibited NO production in peritoneal macrophages, rat hepatocytes, and rat aortic smooth muscle cells stimulated with LPS plus cytokines, but it did not inhibit NO production in iNOS-transfected AKN-1 cells or iNOS enzyme activity. These reagents suppressed NF-魏B activation and murine iNOS promoter activity in LPS and IFN纬-stimulated RAW264.7 cells. In contrast, these reagents significantly increased cGMP production by eNOS in HUVEC without changes in activity, protein levels, and cellular distribution of eNOS. Finally, garlic extract and SAC both suppressed the production of hydroxyl radical, confirming their antioxidant activity. These data demonstrate that garlic extract and SAC, due to their antioxidant activity, differentially regulate NO production by inhibiting iNOS expression in macrophages while increasing NO in endothelial cells. Thus, this selective regulation may contribute to the anti-inflammatory effect and prevention of atherosclerosis by these reagents.
DOI:10.1016/S0891-5849(01)00460-9      PMID:11275474      URL    
[本文引用:1]
[12] CALAPAI G, CRUPI A, FIRENZUOLI F, et al.Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis[J]. Life Sci , 2000, 67(22): 2673-2683.
We studied the effects of pre-treatment (15 days) with oral administration of Ginkgo biloba extract (Ph-Gb 37.5-150 mg/kg) on brain malonildialdehyde (MDA), brain edema, brain nitrite and nitrate and delayed neuronal death following transient cerebral ischemia in the Mongolian gerbil. Survival was not modified, however, pre-treatment with Ginkgo biloba significantly and in a dose-dependent way reduced post-ischemic brain MDA levels and post-ischemic brain edema. Delayed neuronal death in the CA1 of the hippocampus was attenuated by the highest dose of the extract. Increase of nitrite and nitrate was observed after cerebral ischemia in the hippocampus and it was dose-dependently reduced in animals pretreated with Ph-Gb, thus suggesting that neuroprotective effects of Ginkgo biloba may be due to an inhibitory action on nitric oxide formation.
DOI:10.1016/S0024-3205(00)00858-4      PMID:11105983      URL    
[本文引用:1]
[13] YAGI K.Lipid peroxides and related radicals in clinical medicine[J]. Adv Exp Med Biol, 1994, 366(1): 1-15.
In 1980, when the author organized an international symposium on “Lipid Peroxides in Biology and Medicine” 1 , he was convinced that the research on the significance of lipid peroxides and their related free radicals in medicine had gotten off to a good start. Thereafter, many valuable results on this topic have been accumulated, and the problem has become of practical importance in clinical medicine. Thus, the present symposium seems to be timely organized.
DOI:10.1007/978-1-4615-1833-4_1      PMID:7771246      URL    
[本文引用:1]
[14] IQBAL Z, MIDGLEY J M, WATSON D G, et al.Effect of oral administration of vitamin C on human aqueous humor ascorbate concentration[J]. Acta Pharmacol Sin, 1999, 20(10): 879-883.
AIM: To study oral administration of vitamin C on human aqueous humour ascorbate concentration. METHODS: High performance liquid chromatography (HPLC) coupled with electrochemical detector (ECD) was used. The effect of oral administration of various doses of ascorbic acid, 0 (control), 1.0, 1.5, 2.0, 3.0, and 5.0 g, on its concentration in aqueous humour, obtained from volunteer cataract patients was studied. RESULTS: The concentration of ascorbic acid in aqueous humour of control group (without administration of vitamin-C tablet or drug containing ascorbic acid was (254 +/- 119) mg.L-1. This study revealed that the administration of 2.0 g of ascorbic acid saturate the aqueous humour and further increase in the dose (3.0 g and 5.0 g) did not increase its concentration in aqueous humour, although its concentration was increased in plasma. CONCLUSION: Oral administration of 2.0 g of Vc is sufficient to saturate the aqueous humour where it may be helpful in controlling the intra-ocular pressure.
DOI:10.3891/acta.chem.scand.53-0952      PMID:11270984      URL    
[本文引用:1]
[15] PI J, KUMAGAI Y, SUN G, et al.Improved method for simultaneous determination of L-arginine and its mono- and dimethylated metabolites in biological samples by high-performance liquid chromatography[J]. J Chromatogr B Biomed Sci Appl, 2000,742(1):199-203.
ABSTRACT An improved method has been developed for the determination of L-arginine and its methylated metabolites, N(G)-monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (asymmetric DMA, ADMA) and N(G),N(G)'-dimethyl-L-arginine (symmetric DMA, SDMA) in biological samples. Extraction of these compounds with a strong cation-exchange resin AG50W-X8 with L-homoarginine (2-amino-6-guanidinohexanoic acid) as an internal standard gave a recovery of more than 70% except for SDMA from plasma samples. After extracted samples were converted to fluorescent derivatives with o-phthalaldehyde (OPA) in an alkaline medium, the following high-performance liquid chromatographic separation with a ODS column (wide-pore size, 300 A) was successfully performed with an isocratic mobile phase system. The method permits quantitative determination of L-arginine and its methylated metabolites at concentrations as low as 4 microM and 0.18 microM, respectively. Using this method, the levels of L-arginine, L-NMMA, ADMA and SDMA in human plasma, urine and rat tissue were determined.
DOI:10.1016/S0378-4347(00)00145-6      PMID:10892599      URL    
[本文引用:1]
[16] SHARMA S, SINGH M, SHARMA P L.Mechanism of attenuation of diabetes mellitus and hypercholesterolemia induced vascular endothelial dysfunction by protein tyrosine phosphatase inhibition[J]. Vascul Pharmacol, 2011, 54(3/6): 80-87.
ABSTRACT
DOI:10.1016/j.vph.2010.12.005      PMID:21237289      URL    
[本文引用:1]
[17] FERSON O, DESSY C, MONIOTTE S, et al.Hyper-cholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase[J]. J Clin Invest, 1999, 103(6): 897-905. [本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
-烯丙基半胱氨酸
高脂血症
一氧化氮
抗氧化

-allylcysteine
Hyperlipidemic
Nitric oxide
Antioxidants

作者
严婧婷
张容
徐诗强
高成志
杜晶
胡霞敏

YAN Jingting
ZHANG Rong
XU Shiqiang
GAO Chengzhi
DU Jing
HU Xiamin