中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(10): 1153-1157
doi: 10.3870/j.issn.1004-0781.2017.10.015
7,8-二羟基黄酮对精神分裂症模型大鼠空间认知及海马突触结构的影响*
Effects of 7,8-Dihydroxyflavone on Spatial Cognitive Function and Synaptic Structure in Schizophrenia Rat Model
占瑾琼, 余斌, 康光宇, 闫琨, 杨远坚

摘要:

目的 探讨特异性TrkB受体激动剂7,8-二羟基黄酮(7,8-DHF)对精神分裂症模型大鼠空间认知及海马突触结构的影响。方法 按随机数字表法将出生后6天SD幼鼠分成正常对照组和模型组。第7~11天,正常对照组皮下注射0.9%氯化钠溶液1 mL·kg-1,模型组则皮下注射地佐环平0.1 mg·kg-1,每天2次。出生后第60天,模型组大鼠随机分成7,8-DHF组和模型对照组,分别给予7,8-DHF(5 mg·kg-1)和二甲亚砜(DMSO)腹腔注射,每天1次,连续14 d。正常对照组大鼠注射等容积DMSO。利用水迷宫实验检测大鼠空间认知能力,高尔基染色检测海马神经元树突棘密度,Western blotting检测海马组织蛋白表达及活性。结果 旷场实验结果,正常对照组5 min内总运动距离(12.20±1.62) m,模型对照组为(11.73±1.36) m,7,8-DHF组为(12.94±1.09) m。模型对照组大鼠逃避潜伏期和运动距离均显著大于正常对照组(P<0.05),与模型对照组比较,7,8-DHF组模型大鼠逃避潜伏期和运动距离显著缩短(P<0.05);3组大鼠在训练期间游泳速度差异无统计学意义(均P>0.05)。正常对照组大鼠海马神经元树突棘密度(14.2±2.3)/10 μm,模型对照组为(8.0±1.9)/10 μm(P<0.05),7,8-DHF组为(13.5±1.7)/10 μm(P<0.05);正常对照组GluR1蛋白磷酸化水平为(100.0±5.0),模型对照组为(47.9±10.8)(P<0.05),7,8-DHF 组为(97.5±9.3)(P<0.05)。结论 7,8-DHF可有效改善精神分裂症模型大鼠空间认知能力,可能与其上调海马神经元的树突棘密度和GluR1蛋白功能有关。

关键词: 7 ; 8-二羟基黄酮 ; 精神分裂症 ; 认知功能 ; 海马突触结构

Abstract:

Objective To investigate the effects of specific TrkB receptor agonist 7,8-dihydroxyflavone (7,8-DHF) on spatial cognitive function and synaptic structure in schizophrenia rat model. Methods SD infant rats were divided into normal control group and model group according to the random number table method on the 6th day after birth. During the postnatal day 7 to 11, rats in the normal control group received subcutaneous injection of 0.9% sodium chloride solution (1 mL·kg-1) twice daily, and the rats in the model group were injected with dizocilpine (0.1 mg·kg-1). Beginning on the postnatal day 60, model rats were randomly divided into 7,8-DHF group and model control group, which were given intraperitoneal injection of 7,8-DHF (5 mg·kg-1) and DMSO once daily for 14 consecutive days, respectively. The rats of normal control group were given equal volume injections of DMSO. Morris water maze task, Golgi staining and Western blotting were adopted to examine spatial cognitive function, hippocampal dendritic spine density, protein expression and activity, respectively. Results The result in the open field test showed that the total travelled distance within 5 min was (12.20±1.62) m in the normal control group, (11.73±1.36) m in the model control group and (12.94±1.09) m in the 7,8-DHF group. The escape latency and travelled distance in the model control group were significantly higher than those in the normal control group (P<0.05), and the escape latency and travelled distance in rats of 7,8-DHF group were significantly shortened as compared with those in the model control group (P<0.05). There was no significant difference in the swimming speed among the three groups (P>0.05). The hippocampal dendritic spine density was (14.2±2.3)/10 μm in the normal control group, (8.0±1.9)/10 μm in the model control group, and (13.5±1.7)/10 μm in the 7,8-DHF group, the differences between the three groups were significant (all P<0.05); the phosphorylation level of GluR1 protein was (100.0±5.0) in the normal control group, (47.9±10.8) in the model control group, and (97.5±9.3) in the 7,8-DHF group, and the differences among the three groups were significant (all P<0.05). Conclusion 7,8-DHF treatment could improve the spatial cognitive function in rat model of schizophrenia and the mechanisms might be related with the increases of hippocampal dendritic spine density and phosphorylated levels of GluR1.

Key words: 7 ; 8-Dihydroxyflavone ; Schizophrenia ; Cognitive function ; Synaptic structure

认知功能损害是精神分裂症的核心症状,但目前尚缺乏有效治疗手段。研究显示,脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)与其酪氨酸激酶受体B(tyrosine kinase receptor B,TrkB)功能异常与精神分裂症认知损害密切相关[1]。如精神分裂症患者和模型动物脑组织BDNF及TrkB含量显著降低,与认知损害严重程度存在关联[2];增加体内BDNF水平可改善精神分裂症患者认知功能[3]。7,8-二羟基黄酮(7,8-dihydroxyflavone,7,8-DHF)是新型特异性TrkB受体激动剂,研究显示它可透过血-脑屏障产生BDNF样认知增强作用[4]N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体功能下调可引起精神分裂症相关认知功能损害[5-6]。笔者在本研究通过7,8-DHF对NMDA受体功能下调所致大鼠空间认知及海马突触结构的影响,探讨7,8-DHF作为精神分裂症认知障碍治疗药物的潜能,报道如下。

1 材料与方法
1.1 材料

1.1.1 实验动物 清洁级SD幼鼠,雄性,体质量60~70 g,购自于江西中医药大学动物实验中心,实验动物生产许可证号:SCXK(赣)2014-0008。动物饲养室温度维持在(22±2)℃,自然光照节律,食物和水供充足。

1.1.2 试药 地佐环平(Sigma公司,批号:77086-22-7)。二甲亚砜(DMSO,Sigma公司,批号:67-68-5)。7,8-DHF(Tocris公司,批号:3826,含量> 98%)。GluR1抗体(Santa Cruz公司,批号:sc-55509)。磷酸化GluR1(pGluR1)抗体(Santa Cruz公司,批号:sc-16313)。

1.1.3 仪器 ANY-maze动物行为分析系统(Stoeling公司)。蛋白凝胶电泳仪(北京六一仪器厂生产,型号:DYCZ-25E型P4垂直电泳仪)。生物显微镜(奥林巴斯公司生产,型号:BX53)。

1.2 实验动物分组及处理

按随机数字表法将出生后6 d的SD幼鼠分成正常对照组(n=12)和模型组(n=24)。第7~11天,正常对照组皮下注射0.9%氯化钠溶液1 mL·kg-1,模型组皮下注射地佐环平0.1 mg·kg-1,每天2次(9:00和16:00)[5]。注射时幼鼠放置在37 ℃加热垫上。幼鼠于出生后第20天断奶并分笼,每笼饲养3或4只。出生后第60天,模型

组大鼠随机分成7,8-DHF组和模型对照组,每组12只,分别给予7,8-DHF(5 mg·kg-1)或DMSO腹腔注射,每天1次,连续14 d。正常对照组大鼠注射等容积DMSO。所有动物实验操作遵循国际实验动物护理和使用指南(欧盟指令2010/63/EU[7]),并经江西省精神病院伦理委员会审批和批准。本研究起止时间为2015年10月—2016年7月。

1.3 旷场实验

实验在透明有机玻璃箱内进行,利用摄像头及软件系统追踪和记录动物在场箱内的位置及活动情况,并进行数据分析。实验时将动物背朝操作员轻放于箱中央,使其自由探索5 min后放回笼内,记录大鼠的总运动距离,以反映其自发活动水平[8]

1.4 Morris水迷宫实验

从4个不同象限将大鼠面向池壁放入池内,若大鼠在120 s内能找到隐藏在水中的平台,则让其在平台上停留20 s;若在规定时间没有找到平台,则引导其至平台适应20 s。实验结束后,将大鼠擦拭干净并放回笼中。连续训练5 d,每天4次,每次需从不同象限放入,间隔时间为1 h。利用实验软件记录并分析大鼠逃避潜伏期、运动距离及游泳速度[9]

1.5 高尔基染色实验

将麻醉大鼠固定于手术台,用10%甲醛氯化钠溶液进行心脏灌注。灌注结束后取出脑组织,切成厚5 mm的组织小块,置于媒染液浸泡3 d,再用1%硝酸银浸泡3 d。利用Leica振荡切片机切割脑组织块,厚度50 μm,用2%重铬酸钾漂洗切片10 min,后将切片置于烘干载玻片上晾干。利用奥林巴斯BX53生物显微镜在100×油镜下观察大鼠海马CA1区神经元的树突棘情况,拍照统计其密度[10]

1.6 免疫印迹(Western blotting)实验

分离大鼠海马组织,加入组织裂解液(含50 mmol·L-1Tris-base,pH 值7.4,100 mmol·L-1氯化钠,1% NP-40,10 mmol·L-1 EDTA,20 mmol·L-1 氟化钠,1 mmol·L-1PMSF,3 mmol·L-1 Na3VO4,蛋白酶抑制剂混合物)并用匀浆器将组织研磨。随后在冰上静置30 min,12 000×g离心15 min,取上清液用BCA法测定蛋白浓度。蛋白样品加入上样缓冲液后煮沸5 min,冻存于-80 ℃冰箱备用。制备SDS-PAGE凝胶,加入蛋白样品,电泳1.5 h后,利用湿转膜装置将蛋白质从SDS-PAGE凝胶转移至硝酸纤维(NC)膜。NC膜经无脂牛奶封闭,1 h后使用一抗(GluR1抗体1:1 000、p-GluR1抗体1:500和β-actin抗体1:2 000)孵育过夜。NC膜经TBST漂洗3次后,加入二抗(1:3 000)常温孵育1 h。加入电致化学发光(electrochemiluminescence,ECL)显色液反应5 min,终止显色,并将胶片放在NC膜上,在暗室里爆光,将胶片进行冲洗。目的条带用IPP 6.0软件分析系统进行灰度值分析。目的蛋白条带与β-actin条带吸光度的比值表示蛋白表达量[8]

1.7 统计学方法

采用SPSS 18.0版统计软件进行分析,计量资料以均数±标准差( x ¯ ±s)表示。水迷宫实验数据采用重复测量资料方差分析(组别为组间因素,训练天数为组内因素);旷场实验、高尔基染色和Western blotting数据使用单因素方差分析,并用LSD检验进行两两比较。以 P<0.05表示差异有统计学意义。

2 结果
2.1 对大鼠自发活动的影响

旷场实验结果显示,正常对照组5 min内总运动距离为(12.20±1.62) m,模型对照组为(11.73±1.36) m,7,8-DHF组为(12.94±1.09) m。与正常对照组比较,模型对照组大鼠在5 min内总运动距离差异无统计学意义(P>0.05),7,8-DHF组与正常对照组大鼠相近,表明地佐环平和7,8-DHF处理对大鼠运动功能没有影响。

2.2 对空间认知功能的影响

大鼠在训练期间爬上平台的逃避潜伏期和运动距离结果见表1。从训练第2天开始,模型对照组大鼠逃避潜伏期和运动距离均显著大于正常对照组(P<0.05),与模型对照组比较,7,8-DHF组模型大鼠的逃避潜伏期和运动距离显著缩短(P<0.05),其水平与正常对照组类似。对逃跑潜伏期的双因素方差分析结果显示,组别因素F(2,33)=38.678,P<0.05;时间因素F(2,33)=34.119,P<0.05。对运动距离的数据分析显示,组别因素F(4,31)=32.365,P<0.05;时间因素F(4,31)=38.516,P<0.05。表2显示3组大鼠在训练期间的游泳速度差异无统计学意义(均P>0.05),提示3组大鼠逃避潜伏期和运动距离的差异与运动能力无关。

表1 3组大鼠Morris水迷宫实验结果
Tab.1 Results of Morris water maze test in three groups of rats x¯±s,n=12
组别 逃避潜伏期/s
第1天 第2天 第3天 第4天 第5天
正常对照组 35.36±3.66 22.30±3.66 18.02±3.00 11.93±1.62 10.89±3.34
模型对照组 44.57±3.37 37.74±4.04*1 28.91±4.25*1 24.19±5.45*1 25.24±3.77*1
7,8-DHF组 37.93±4.33 24.17±4.26*2 15.17±3.15*2 12.82±3.94*2 11.51±3.05*2
组别 运动距离/cm
第1天 第2天 第3天 第4天 第5天
正常对照组 661.12±65.68 420.12±75.95 264.38±83.81 210.43±62.78 228.00±57.55
模型对照组 887.31±82.45 726.70±95.34*1 527.62±87.05*1 453.28±67.07*1 441.77±55.41*1
7,8-DHF组 695.94±77.76 405.70±96.84*2 300.78±64.64*2 265.88±49.85*2 213.35±68.37*2

Compared with normal control group,*1P<0.05;Compared with model control group,*2P<0.05

与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

表1 3组大鼠Morris水迷宫实验结果

Tab.1 Results of Morris water maze test in three groups of rats x¯±s,n=12

表2 3组大鼠游泳速率
Tab.2 Swimming speed of three groups of rats cm·s-1,x¯±s,n=12
组别 第1天 第2天 第3天 第4天 第5天
正常对照组 19.23±1.20 19.55±1.05 18.35±1.85 18.10±0.55 18.44±1.01
模型对照组 17.93±1.07 18.32±1.46 19.67±1.79 18.87±1.27 18.45±1.41
7,8-DHF组 18.53±1.27 18.92±1.40 18.89±1.41 19.36±1.29 19.14±1.18

表2 3组大鼠游泳速率

Tab.2 Swimming speed of three groups of rats cm·s-1,x¯±s,n=12

2.3 大鼠海马神经元树突棘密度

神经元树突棘密度与学习记忆能力呈正相关。结果显示,与正常对照组大鼠海马神经元的树突棘密度(14.2±2.3)/10 μm比较,模型对照组大鼠海马神经元的树突棘密度(8.0±1.9)/10 μm明显降低(P<0.05);与模型对照组比较,7,8-DHF组大鼠海马神经元树突棘密度(13.5±1.7)/10 μm显著增加(P<0.05),与正常对照组相似。见图1。

图1 3组大鼠海马神经元树突棘高尔基染色情况(×2 000)
A.正常对照组;B.模型对照组;C.7,8-DHF组

Fig.1 Golgi staining on hippocampal neuron in three groups of rats(×2 000)
A.normal control group;B.model control group;C.7,8-DHF group

2.4 上调大鼠海马组织GluR1蛋白磷酸化水平

AMPA受体GluR1亚基是BDNF/TrkB信号的关键作用靶点,p-GluR1与GluR1条带的吸光度比值表示为GluR1蛋白磷酸化水平,其磷酸化水平与认知功能有关。正常对照组、模型对照组和7,8-DHF组GluR1蛋白磷酸化水平分别为(100.0±5.0),(47.9±10.8),(97.5±9.3)。Western blotting结果显示,模型对照组大鼠海马组织GluR1总蛋白表达与正常对照组比较差异无统计学意义,但p-GluR1则显著减少(P<0.05);慢性腹腔注射7,8-DHF可逆转模型大鼠海马组织的p-GluR1改变,见图2。

图2 Western blotting 检测3组大鼠海马组织GluR1、p-GluR1和β-actin蛋白
A.正常对照组;B.模型对照组;C.7,8-DHF组

Fig.2 Western blotting analysis on GluR1, p-GluR1 and β-actin in hippocampal tissues from three groups of rats
A.normal control group;B.model control group;C.7,8-DHF group

3 讨论

NMDA受体在神经系统发育成熟过程中发挥重要作用,它能调节神经元活性,参与树突轴突结构发育及突触可塑性形成,是学习记忆过程中的关键受体[11]。STEFANI等[5]报道,在发育早期阻断NMDA受体功能会导致动物成年后出现类似于精神分裂症的行为学表现,如认知缺陷、性格改变和行为紊乱等。本研究结果发现在大鼠神经发育的关键时期(出生后第7~11天)皮下注射NMDA受体拮抗剂药地佐环平可导致其在成年期出现空间认知损害,体现为较差的寻找迷宫平台能力,表明精神分裂症认知损害的大鼠模型构建成功,与文献[9]报道一致。而模型大鼠自发活动水平、游泳速度与正常对照组大鼠差异无统计学意义,排除模型大鼠空间认知缺陷是由运动障碍导致的可能性。

认知损害是精神分裂症第三大核心症状,新型抗精神病药物虽对认知功能有一定的改善作用,但是效果并不确切,且有些抗精神病药甚至还因严重的药物不良反应(如锥体外系反应、过度镇静等)而不同程度地影响患者认知功能[12],因此精神分裂症认知障碍的治疗已成为研究的热点。BDNF是神经营养素家族的重要成员,对神经系统生长发育尤其是突触可塑性形成具有至关重要作用,其生物学效应主要通过与TrkB受体结合产生。研究显示,BDNF/TrkB功能异常可能是精神分裂症认知损害的关键病理基础[1]。7,8-DHF是特异性TrkB受体激动剂,对正常和病理情况下动物的认知功能均具有正性调节作用[4],如增强正常大鼠学习能力、阻断应激束缚所致大鼠记忆损伤、逆转老年痴呆小鼠记忆障碍等。本研究发现,慢性腹腔注射7,8-DHF可显著改善精神分裂症模型大鼠空间认知功能,不仅提示7,8-DHF具有治疗精神分裂症认知障碍的潜能,还为精神分裂症存在大脑BDNF/TrkB功能异常理论提供实验依据。

树突棘是神经元形成突触的部位,其数量与突触传递效能密切相关[13]。神经电生理研究发现,精神分裂症患者或模型动物的皮层和海马区突触传递效能存在异常,表现为突触传递的长时程增强现象显著抑制[9-14],而长时程增强被认为是学习记忆的分子学基础。与正常对照组大鼠比较,模型对照组大鼠海马神经元的树突棘密度显著降低,该结果从突触可塑性层面证实精神分裂症模型动物存在认知功能损害;而慢性7,8-DHF给药可使模型大鼠海马神经元树突棘密度恢复正常,表明7,8-DHF通过逆转海马神经元的突触结构进而改善模型动物的认知能力。

AMPA受体是中枢神经系统重要的兴奋性谷氨酸受体,其功能状态与多种认知和行为紧密相关[15]。NMDA受体激活引起钙离子内流可通过激活钙调蛋白激酶,影响AMPA受体的磷酸化水平,调节其突触膜转运,进而参与突触可塑性和学习记忆形成过程[5]。GluR1亚基是构成AMPA受体的基本亚单位,其磷酸化水平与认知功能正性相关[15]。ZHANG等[16]研究发现,奥氮平改善精神分裂症模型大鼠认知功能与海马组织GluR1亚基的磷酸化水平上调有关。本研究发现,模型对照组大鼠海马神经元GluR1亚基的磷酸化水平显著降低,而给予7,8-DHF可上调GluR1蛋白磷酸化至正常对照组水平,表明GluR1磷酸化调节是7,8-DHF改善模型动物认知损害的重要机制。

综上所述,本研究发现TrkB受体激动剂7,8-DHF可显著改善NMDA受体功能下调所致大鼠认知功能损害,其机制与上调海马神经元树突棘密度及GluR1蛋白磷酸化水平有关。基于7,8-DHF具有良好的血-脑屏障通透能力[4],本研究提示7,8-DHF可能是精神分裂症认知障碍治疗的潜在药物。笔者在本研究只探讨7,8-DHF对NMDA受体功能下调所致大鼠空间认知缺陷的改善作用,其是否也可改善其他方面的认知如情绪记忆、新物体认知等则尚不清楚;同时7,8-DHF发挥药理学作用的剂量范围也尚不明确。在以后的研究中,将进一步研究7,8-DHF对其他方面认知功能的影响并探讨其最佳的剂量。

The authors have declared that no competing interests exist.

参考文献

[1] PILLAI A.Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia[J].Neurosignals,2008,16(2/3):183-193.
The role of neurotropins, predominantly brain-derived neurotropic factor (BDNF), has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Both human and rodent studies indicate that the beneficial effects of antipsychotic drugs are mediated, at least in part, through BDNF and its receptor, TrkB. This review will discuss the available data on the levels of BDNF and TrkB in subjects with schizophrenia and in animals with and without conventional antipsychotics. The data concerning the impact of the antipsychotic drugs on BDNF/TrkB signaling will also be discussed. More importantly, this review will provide future perspective on BDNF/TrkB signaling as a novel molecular target to correct the pathogenesis and improve the long-term clinical outcome by treatments with conventional and adjunctive drugs.
DOI:10.1159/000111562      PMID:18253057      URL    
[本文引用:2]
[2] DURANY N,MICHEL T,ZOCHLING R,et al.Brainderiv-ed neurotrophic factor and neurotrophin 3 in schizophrenic psychoses[J].Schizophr Res,2001,52(1/2):79-86.
Abstract Disturbed neural development has been postulated as a crucial factor in the pathophysiology of schizophrenic psychoses. The neurobiochemical basis for such changes of cytoarchitecture and changed neural plasticity could involve an alteration in the regulation of neurotrophic factors. In order to test this hypothesis, BDNF and NT-3 levels in post-mortem brain tissue from schizophrenic patients were determined by ELISA. There was a significant increase in BDNF concentrations in cortical areas and a significant decrease of this neurotrophin in hippocampus of patients when compared with controls. NT-3 concentrations of frontal and parietal cortical areas were significantly lower in patients than in controls. These findings lend further evidence to the neurotrophin hypothesis of schizophrenic psychoses which proposes that alterations in expression of neurotrophic factors could be responsible for neural maldevelopment and disturbed neural plasticity, thus being an important event in the etiopathogenesis of schizophrenic psychoses.
DOI:10.1016/S0920-9964(00)00084-0      PMID:11595394      URL    
[本文引用:1]
[3] EHRENREICH H,HINZE-SELCH D,STAWICKI S,et al.Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin[J].Mol Psychiatry,2007,12(2):206-220.
Schizophrenia is increasingly recognized as a neurodevelopmental disease with an additional degenerative component, comprising cognitive decline and loss of cortical gray matter. We hypothesized that a neuroprotective/neurotrophic add-on strategy, recombinant human erythropoietin (rhEPO) in addition to stable antipsychotic medication, may be able to improve cognitive function even in chronic schizophrenic patients. Therefore, we designed a double-blind, placebo-controlled, randomized, multicenter, proof-of-principle (phase II) study. This study had a total duration of 2 years and an individual duration of 12 weeks with an additional safety visit at 16 weeks. Chronic schizophrenic men (N=39) with defined cognitive deficit (>or=1 s.d. below normal in the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)), stable medication and disease state, were treated for 3 months with a weekly short (15 min) intravenous infusion of 40,000 IU rhEPO (N=20) or placebo (N=19). Main outcome measure was schizophrenia-relevant cognitive function at week 12. The neuropsychological test set (RBANS subtests delayed memory, language-semantic fluency, attention and Wisconsin Card Sorting Test (WCST-64) - perseverative errors) was applied over 2 days at baseline, 2 weeks, 4 weeks and 12 weeks of study participation. Both placebo and rhEPO patients improved in all evaluated categories. Patients receiving rhEPO showed a significant improvement over placebo patients in schizophrenia-related cognitive performance (RBANS subtests, WCST-64), but no effects on psychopathology or social functioning. Also, a significant decline in serum levels of S100B, a glial damage marker, occurred upon rhEPO. The fact that rhEPO is the first compound to exert a selective and lasting beneficial effect on cognition should encourage new treatment strategies for schizophrenia.
DOI:10.1038/sj.mp.4001907      PMID:17033631      URL    
[本文引用:1]
[4] DU X,HILL R A.7,8-Dihydroxyflavone as a proneurotrop-hic treatment for neurodevelopmental disorders[J].Neurochem Int,2015,89:170-180.
Neurodevelopmental disorders are a group of conditions that arises from impairments of the central nervous system during its development. The causes of the various disorders are heterogeneous and the symptoms likewise are multifarious. Most of these disorders currently have very little available treatment that is effective in combating the plethora of serious symptoms. Brain-derived neurotrophic factor (BDNF) is a fundamental neurotrophin with vital functions during brain development. Pre-clinical studies have shown that increasing BDNF signalling may be a potent way to prevent, arrest or even reverse abnormal neurodevelopmental events arising from a variety of genetic or environmental causes. However, many difficulties make BDNF problematic to administer in an efficient manner. The recent discovery of a small BDNF-mimetic, the naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF), may provide an avenue to allow efficient and safe activation of the BDNF pathway in tackling the symptoms of neurodevelopmental disorders. Here, evidence will be provided to support the potential of 7,8-DHF as a novel treatment for several neurodevelopmental disorders where the BDNF signalling pathway is implicated in the pathophysiology and where benefits are therefore most likely to be derived from its implementation.
DOI:10.1016/j.neuint.2015.07.021      PMID:26220903      URL    
[本文引用:3]
[5] STEFANI M R,MOGHADDAM B.Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia[J].Biol Psychiatry,2005,57(4):433-436.
These results suggest that a brief disruption of NMDA receptors during a sensitive period of cortical development is sufficient to produce selective cognitive deficits that are relevant to schizophrenia.
DOI:10.1016/j.biopsych.2004.11.031      PMID:15705361      URL    
[本文引用:4]
[6] 王绍礼,翁永振,黄淑贞.氯氮平治疗精神分裂症的机制与谷氨酸假说[J].医药导报,2002,21(10):638-639.
URL    
[本文引用:1]
[7] CHLEBUS M,GUILLEN J,PRINS J B.Directive 2010/63/EU:facilitating full and correct implementation[J].Lab Anim,2016,50(2):151.
DOI:10.1177/0023677216639470      PMID:27091061      URL    
[本文引用:1]
[8] WANG C M,YANG Y J,ZHANG J T,et al.Regulation of emotional memory by hydrogen sulfide:role of GluN2B-containing NMDA receptor in the amygdala[J].J Neurochem,2015,132(1):124-134.
As an endogenous gaseous molecule, hydrogen sulfide (H2S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2S on amygdala-mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2S could regulate emotional memory. It was shown that the H2S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intraamygdala and systemic administrations of H2S markedly enhanced amygdala-dependent cued fear memory in rats. Moreover, it was found that H2S selectively increased the surface expression and currents of NMDA-type glutamate receptor subunit 2B (GluN2B)-containing NMDA receptors (NMDARs) in lateral amygdala of rats, whereas blockade of GluN2B-containing NMDARs in lateral amygdala eliminated the effects of H2S to enhance amygdalar long-term potentiation and cued fear memory. These results demonstrate that H2S can regulate amygdala-dependent emotional memory by promoting the function of GluN2B-containing NMDARs in amygdala, suggesting that H2S-associated signaling may hold potential as a new target for the treatment of emotional disorders.
DOI:10.1111/jnc.12961      PMID:25279828      URL    
[本文引用:2]
[9] LIU Y,CHEN J,SONG T,et al.Contribution of K+-Cl- cotrans-porter 2 in MK-801-induced impairment of long term potentiation[J].Behav Brain Res,2009,201(2):300-304.
Previous studies have indicated that GABAergic disinhibition contributes to cognitive deficits mediated by NMDA receptor hypofunction in schizophrenia model of rats. However, the underlying mechanism of GABAergic disinhibition in schizophrenia remains elusive. In this study, we found that the maintenance of long term potentiation (LTP) was impaired in the hippocampus of rats with MK-801-induced cognitive impairments. The impairment of LTP maintenance was significantly reversed by picrotoxinin, a specific GABA(A) receptor-chloride channel blocker and furosemide, a K+-Cl- cotransporter 2 (KCC2) blocker, respectively. Furthermore, immunoblotting results indicated KCC2 expression in hippocampal CA1 of MK-801-treated rats was lower than that of normal rats before LTP induction. Additionally, LTP-accompanied downregulation of KCC2 was prevented in MK-801-treated rats during LTP induction. Our results suggested that KCC2 expression in hippocampal CA1 of MK-801-treated rats was not further decreased by LTP induction because of its low expression caused by MK-801 treatment. Accordingly, GABAergic inhibition was not further decreased during LTP induction due to the depressed basal GABAergic tone in MK-801-treated rats, Therefore, GABAergic disinhibition in MK-801-treated rats restricts the further downregulation of KCC2 during LTP induction and contributes to the stable GABAergic inhibition and the impaired LTP expression. Our results thus reveal the mechanism that GABAergic disinhibition contributes to cognitive deficits.
DOI:10.1016/j.bbr.2009.02.028      PMID:19428648      URL    
[本文引用:2]
[10] CHEN T,YANG Y J,LI Y K,et al.Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs,CaMKII and SIRT1/miR-134 in vivo[J].J Ethnopharmacol,2016,190:74-82.
Chronic administration of TSG promotes hippocampal memory in normal mice, suggesting that supplementary of TSG might serve as an enhancement of memory.
DOI:10.1016/j.jep.2016.06.012      PMID:27275773      URL    
[本文引用:1]
[11] HARRIS L W,SHARP T,GARTLON J,et al.Longterm be-havioural,molecular and morphological effects of neonatal NMDA receptor antagonism[J].Eur J Neurosci,2003,18(6):1706-1710.
Brief N-methyl-D-aspartate (NMDA) receptor blockade in neonatal rats has been reported to increase neuronal apoptosis. We replicated this finding using MK-801 (0.5 mg/kg) administered twice on postnatal day 7, and then studied the long-term consequences. In adulthood, treated rats showed reduced volume and neuronal number within the hippocampus, and altered hippocampal NMDA receptor (NR1 subunit) expression. Synaptophysin mRNA was decreased in the thalamus (laterodorsal nucleus). Adult MK-801-treated females had prepulse inhibition deficits and increased locomotor activity. The data show that a transient and limited glutamatergic intervention during development can have chronic behavioural, structural and molecular effects. The effects are reminiscent of alterations reported in schizophrenia and, as such, are consistent with hypotheses advocating a role for NMDA receptor hypofunction, and aberrant apoptosis, in the neurodevelopmental pathogenesis of the disorder.
DOI:10.1046/j.1460-9568.2003.02902.x      PMID:14511349      URL    
[本文引用:1]
[12] HARVEY P D,KEEFE R S.Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment[J].Am J Psychiatry,2001,158(2):176-184.
OBJECTIVE: Novel antipsychotic medications have been reported to have beneficial effects on cognitive functioning in patients with schizophrenia. However, these effects have been assessed in studies with considerable variation in methodology. A large number of investigator-initiated and industry-sponsored clinical trials are currently underway to determine the effect of various novel antipsychotics on cognitive deficits in patients with schizophrenia. The ability to discriminate between high- and low-quality studies will be required to understand the true implications of these studies and their relevance to clinical practice. METHOD: This article addresses several aspects of research on cognitive enhancement in schizophrenia, emphasizing how the assessment of cognitive function in clinical trials requires certain standards of study design to lead to interpretable results. RESULTS: Novel antipsychotic medications appear to have preliminary promise for the enhancement of cognitive functioning. However, the methodology for assessing the treatment of cognitive deficits is still being developed. CONCLUSIONS: Researchers and clinicians alike need to approach publications in this area with a watchful eye toward methodological weaknesses that limit the interpretability of findings.
DOI:10.1183/09031936.00100407      PMID:11156796      URL    
[本文引用:1]
[13] 王玉珠,张均田.认知功能和神经可塑性——调节神经可塑性是人参皂苷Rg1改善认知功能的基本机制[J].医药导报,2007,26(7):702-708.
综述认知功能和神经可塑性.由于人参皂苷Rg1(Rg1)对10种记忆损伤模型均有改善作用,所以阐述了Rg1的药理学活性及其机制.Rg1的益智效应机制研究表明Rg1的益智作用是由于它从效能和结构两方面提高了神经可塑性.①Rg1上调乙酰胆碱(Ach)浓度和M-胆碱受体在中枢神经系统的密度;②提高基础突触传递和突触密度;③使BDNF蛋白表达增加;④在青年鼠和老年鼠均上调c-fos基因;⑤在正常和脑缺血-再灌模型的啮齿类动物体内体外试验均可以提高海马神经发生.这些新发现表明Rg1对于阿尔茨海默病(AD)和不同的记忆损伤是一个非常有前景的治疗药物.因此非常有必要开展更加深入的研究,包括益智信号转导途径的阐明、临床研究和不同皂苷单体的工业化生产.
[本文引用:1]
[14] FRANTSEVA M V,FITZGERALD P B,CHEN R,et al.Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning[J].Cereb Cortex,2008,18(5):990-996.
Several lines of evidence suggest that schizophrenia (SCZ) is associated with disrupted plasticity in the cortex. However, there is little direct neurophysiological evidence of aberrant long-term potentiation (LTP)-like plasticity in SCZ and little human evidence to establish a link between LTP to learning and memory. LTP was evaluated using a neurophysiological paradigm referred to as paired associative stimulation (PAS). PAS involves pairing of median nerve electric stimulation with transcranial magnetic stimulation (TMS) over the contralateral motor cortex (for abductor pollicis brevis muscle activation) delivered at 25-ms interstimulus interval. This pairing was delivered at a frequency of 0.1 Hz for 30 min. LTP was reflected by the change in motor evoked potentials (MEPs) before and after PAS. In addition, motor skill learning was assessed using the rotary pursuit task. Compared with healthy subjects, patients with SCZ demonstrated significant MEP facilitation deficits following PAS and impaired rotary-pursuit motor learning. Across all subjects there was a significant association between LTP and motor skill learning. These data provide evidence for disrupted LTP in SCZ, whereas the association between LTP with motor skill learning suggests that the deficits in learning and memory in SCZ may be mediated through disordered LTP.
DOI:10.1093/cercor/bhm151      PMID:17855721      URL    
[本文引用:1]
[15] SANDERSON D J,GOOD M A,SEEBURG P H,et al.The role of the GluR-A(GluR1) AMPA receptor subunit in learning and memory[J].Prog Brain Res,2008,169:159-178.
DOI:10.1016/S0079-6123(07)00009-X      URL    
[本文引用:2]
[16] ZHANG C,FANG Y,XU L.Glutamate receptor 1 phospho-rylation at serine 845 contributes to the therapeutic effect of olanzapine on schizophrenia-like cognitive impairments[J].Schizophr Res,2014,159(2/3):376-384.
Schizophrenia patients exhibit a wide range of impairments in cognitive functions. Clinically, atypical antipsychotic drugs (AAPs) such as olanzapine (OLZ) have a therapeutic effect on memory function among schizophrenia patients rather than typical antipsychotics, e.g., haloperidol. To date, however, little is known about the neuroplasticity mechanism underlying the effect of AAPs on the impairment of cognitive functions. Here, we treated schizophrenia rat models with a systematic injection of MK-801 (0.1mg/kg) and chose the drug OLZ as a tool to investigate the mechanisms of AAPs when used to alter cognitive function. The results showed that the systematic administration of MK-801 results in the impairment of spatial learning and memory as well as spatial working memory in a Morris water maze task. OLZ but not HAL improved these MK-801-induced cognitive dysfunctions. After MK-801 application, the hippocampal LTP was profoundly impaired. In conjunction with the results of the behavioral test, the administration of OLZ but not of HAL resulted in a significant reversal effect on the impaired LTP induced via MK-801 application. Furthermore, we found that OLZ but not HAL can upregulate the phosphorylation of GluR1 Ser845. These data suggest that the therapeutic effect of OLZ on cognitive dysfunctions may be due to its contribution to synaptic plasticity via the ability to upregulate the state of GluR1 Ser845 phosphorylation. We therefore suggest that the upregulated state of GluR1 Ser845 phosphorylation may be a promising target for developing novel therapeutics for treating schizophrenia.
DOI:10.1016/j.schres.2014.07.054      PMID:25219486      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
7
8-二羟基黄酮
精神分裂症
认知功能
海马突触结构

7
8-Dihydroxyflavone
Schizophrenia
Cognitive function
Synaptic structure

作者
占瑾琼
余斌
康光宇
闫琨
杨远坚

ZHAN Jinqiong
YU Bin
KANG Guangyu
YAN Kun
YANG Yuanjian