中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(10): 1182-1186
doi: 10.3870/j.issn.1004-0781.2017.10.023
槲皮素PLGA-TPGS纳米粒的质量考察*
Quality Investigation of Quercetin-loaded PLGA-TPGS Nanoparticles
徐红1,, 张成鸿1, 关欣2, 董浩2, 贾续东3, 刘长松3, 高萌2, 田燕2,

摘要:

目的 以自制材料乳酸羟基乙酸共聚物-维生素E聚乙二醇1000琥珀酸酯(PLGA-TPGS)和市售材料乳酸羟基乙酸共聚物(PLGA)为载体分别制备槲皮素PLGA-TPGS纳米粒(QPTN)和槲皮素PLGA纳米粒(QPN),体外考察和比较2种纳米粒的质量。方法 应用超声乳化-溶剂挥发法分别制备QPTN和QPN,并用透射电子显微镜和激光粒度仪测定2种纳米粒的外观、粒径和表面电荷。采用反相高效液相色谱(RP-HPLC)法,色谱柱为Hypersil C18(4.6 mm×250 mm,5 μm)、甲醇-0.03%磷酸溶液(3:2)为流动相,检测波长为370 nm,测定2种纳米粒的载药量、包封率和体外释放度,对二者的质量进行体外考察和比较。结果 QPTN和QPN的粒径分别为(155.4±2.7)和(363.8±3.2) nm,载药量和包封率分别为(21.6±2.8)%,(93.7±2.9)%和(15.0±1.5)%,(64.6±1.6)%(n=6)。体外药物释放显示2种纳米粒均有明显的缓释作用,30 d时QPTN和QPN的体外累积释放率分别为(85.8±2.8)%和(68.6±1.4)%(n=6)(P<0.05)。结论 QPTN比QPN粒径相对更小、载药量和包封率更大,体外显示有明显的缓释作用,释放比QPN更快、更完全。

关键词: 槲皮素 ; 纳米粒 ; 载药量 ; 包封率

Abstract:

Objective To prepare quercetin (QT)-loaded polylactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) nanoparticles (QPTN) and QT-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (QPN) by using QT as model drug and PLGA-TPGS or PLGA as carrier materials, and to investigate the quality of the two nanoparticles. Methods QPTN and QPN were prepared by using the ultrasonic emulsification-solvent evaporation method, and their surface morphology,size and surface charge were detected by using a transmission electron microscope (TEM) and a Nano ZS90 light scattering and laser Doppler anemometry, respectively. Drug loading (DL), entrapment efficiency (EE) and in vitro drug release of QT in the two nanoparticles were determined by using a reverse phase-high performance liquid chromatography (RP-HPLC) on Hypersil C18 column (4.6 mm×250 mm, 5 μm) with methanol and 0.03% phosphoric acid (3:2) as mobile phase, and the detective wavelength was 370 nm. Results TEM images exhibited that two nanoparticles were all spherical and regular. The average sizes of QPTN and QPN were (155.4±2.7) nm and (363.8±3.2) nm, while DL and EE of QPTN were approximately (21.6±2.8)%, (93.7±2.9)% (n=6), and DL and EE of QPN were approximately (15.0±1.5)%, (64.6±1.6)% (n=6), respectively. Both of nanoparticles exhibited sustained release, and the cumulative QT release of QPTN and QPN reached (85.8±2.8)% and (68.6±1.4)% (n=6) at day 30, respectively, with a significant difference between them (P<0.05). Conclusion QPTN gets smaller size, higher DL and EE, and exhibits sustained release, and the in vitro cumulative QT release is faster and more complete than QPN relatively.

Key words: Quercetin ; Nanoparticles ; Drug loading ; Entrapment efficiency

槲皮素(quercetin,QT)分布在近百种中草药中,主要能降糖、降压、抗炎及降血脂等[1],还具有一定的抗肝癌作用[2-5]。原发性肝癌是世界上常见的恶性肿瘤之一,但目前治疗肝癌技术有限,提高化疗药物的靶向性是改进治疗肝癌效果的有效途径,其中纳米粒(nanoparticles,NPs)是靶向制剂最常用的载体之一,可改变药物在体内的药动学特征,增加药物在靶器官的分布量,从而可提高药物的疗效。QT水溶性差,脂溶性亦差,口服生物利用度较低,限制了其临床应用,故将QT开发为靶向制剂,通过体内外一系列研究,使其最终能在临床上应用,是本研究的最终目的。用于制备纳米粒的高分子材料较多,笔者在本研究主要采用自制的高分子材料乳酸羟基乙酸共聚物-维生素E聚乙二醇1000琥珀酸酯(polylactic-co-glycolic acid-D-α-tocopherol polyethylene glycol 1000 succinate,PLGA-TPGS)为载体将QT制成纳米粒,即槲皮素PLGA-TPGS纳米粒(QT-loaded PLGA-TPGS nanoparticles,QPTN),其中市售材料PLGA[6]和TPGS[7]都是安全、稳定、在体内可生物降解、无免疫原性、能用于静脉注射的高分子材料。由于PLGA-TPGS的包载作用,可提高QT的体外稳定性,同时通过控制其粒径和表面电性可使其被动靶向到肝脏,更好发挥对肝癌的治疗作用[8-10]。同时以PLGA为载体制备的槲皮素PLGA纳米粒(QT-loaded PLGA nanoparticles,QPN)为对照,全面考察2种NPs的外观、粒径等,并将结果进行比较。

1 仪器与试药
1.1 仪器

1200高效液相色谱仪(美国Agilent公司);JY92-IIN超声波细胞粉碎机(宁波新艺科技股份有限公司);NanoZS90激光粒径仪(英国Marlvern公司);SORVALL RC高速冷冻离心机(美国Kendro实验室产品公司,离心半径:15 cm);FD-1C冷冻干燥机(北京德天佑科技发展有限公司);RW20数显电动搅拌机(德国IKA公司);MS105DU电子天平(瑞士Mettler-Toledo公司,感量:0.01 mg)。

1.2 试药

槲皮素对照品(中国食品药品检定研究院,批号:100081-200907,含量99%);槲皮素(美仑生物公司,批号:20140105,含量96%);TPGS(美国Eastman化学公司,批号:09060025);PLGA-TPGS(药剂教研室自制,批号:20140108);PLGA(50:50,相对分子质量40 000~75 000,山东省医疗器械研究所,批号:14032609);甲醇(色谱纯,美国Tedia公司,批号:14015027);乙酸乙酯(分析纯,天津基准化学试剂有限公司,批号:20110310);丙酮(分析纯,鞍山智奥化学试剂研究所,批号:20110416);乙腈(色谱纯,美国Tedia公司,批号:20110710);十二烷基硫酸钠(sodium dodecyl sulfate,SDS,分析纯,Sigma公司,批号:L5750)。

2 方法与结果
2.1 QT纳米粒的制备

分别精密称取PLGA-TPGS 100 mg,QT 30 mg(用适量乙酸乙酯溶解)滴加到0.05%TPGS溶液120 mL中,超声功率为200 W,超声6 min,形成乳浊液。再将乳浊液于室温下500 r·min-1电动搅拌12 h,充分挥发乙酸乙酯,20 000 r·min-1离心3次,用纯化水洗至上清液无QT,冷冻干燥24 h,得QPTN,4 ℃储存备用。以市售材料PLGA为载体,同法制备QPN。

2.2 外观的测定

取2种NPs适量分散在水中制成NPs混悬液,取1滴NPs混悬液,置于覆有支撑网的铜网上,沉淀2~3 min后,用滤纸吸掉多余液体,再滴2.5%磷钨酸溶液1滴染色3 min。吸干多余的染色液,干燥,置于透射电镜(transmission electron microscope,TEM)下,观察其形态。结果见图1。结果显示,载药NPs外观圆整,大小均匀,呈类球形,QPN粒径约350 nm,QPTN粒径<200 nm。

图1 QT纳米粒的透射电镜图(×200 000)
A.QPTN;B.QPN

Fig.1 TEM images of QT-loaded nanoparticles(×200 000)
A.QPTN;B.QPN

2.3 粒径及Zeta电位的测定

分别称取2种NPs约2 mg,加到纯化水4 mL中,超声分散后形成NPs混悬液,用NanoZS90激光粒径仪测定2种NPs的粒径分布,结果见图2。QPN平均粒径为(363.8±3.2) nm,Zeta电位为(-14.7±1.6) mV,多分散性系数(polydispersity index,PDI)=0.195(n=3);QPTN平均粒径为(155.4±2.7) nm,Zeta电位为(-23.3±1.2) mV,PDI=0.036(n=3)。表明自制载体材料制备的纳米粒QPTN的粒径更小(约150 nm)、分布更均匀(PDI<0.2时,表示样品粒径分布均匀)。

图2 槲皮素纳米粒的粒径分布图
A.QPTN;B.QPN

Fig.2 Size distribution images of QT-loaded nanoparticles
A.QPTN;B.QPN

2.4 载药量和包封率的测定

2.4.1 QT紫外检测波长的确定 精密称取适量QT,溶解于适量甲醇中,于波长200~700 nm范围内进行紫外扫描。结果表明,QT最大吸收波长在370 nm附近,载体材料PLGA-TPGS在此条件下无干扰,故确定370 nm为反相高效液相色谱(reverse phase-high performance liquid chromatography,RP-HPLC)法测定QT含量的波长

2.4.2 QT的色谱条件 色谱柱为Hypersil C18(4.6 mm×250 mm,5 μm);检测波长370 nm;流动相为甲醇- 0.03%磷酸溶液(3:2);流速为1.0 mL·min-1;柱温为30 ℃;进样量为20 μL。分别精密称取QT对照品、原料药、QPTN和QPN适量,QT用甲醇溶解,QPTN和QPN用丙酮溶解后挥干溶剂,再加入甲醇溶解定容至50 mL(浓度为8.0 μg·mL-1)。RP-HPLC色谱图分别见图3,QT的保留时间约为7.4 min,在此条件下,理论板数以QT计不低于3 000,分离度符合要求。

2.4.3 QT标准曲线的绘制 精密称取干燥至恒重的QT对照品25 mg,加甲醇溶解定容至50 mL,得浓度为500 μg·mL-1对照贮备液。依次精密量取对照贮备液40,80,160,320,640 μL置10 mL量瓶中,加甲醇定容,摇匀,配成浓度为2.0,4.0,8.0,16.0,32.0 μg·mL-1的系列对照品溶液。按照“2.4.2”项色谱条件,取QT系列对照品溶液分别进样3次,以峰面积(A)对浓度(C)进行线性回归。测得标准曲线方程为:A= 65.264C+39.059,r=0.999 5。结果表明,QT在2.0~32.0 μg·mL-1之间线性关系良好。

图3 QT的反相高效液相色谱图
A.QT对照品;B.QT原料药;C.QPTN;D.QPN;1.QT

Fig.3 RP-HPLC chromatography of QT
A.QT standard; B. raw drug of QT; C. QPTN; D. QPN;1.QT

2.4.4 检测限及定量限确定 将已知浓度的对照贮备液稀释,按“2.4.2”项下色谱条件进行检测,以信噪比(signal to noise ratio,S/N)=3和S/N=10所对应的浓度作为本实验条件的检测限与定量限。测得QT最低检测限和定量限分别为0.1和0.4 μg·mL-1

2.4.5 精密度实验 精密量取QT对照贮备液500,800,2 500 μL置50 mL量瓶中,加甲醇定容至刻度,配成5.0,8.0,25.0 μg·mL-1低、中、高3个浓度各1份,按“2.4.2”项方法连续测定5次和每天在同一时间进样、连续测定5 d,分别测定QT对照贮备液的日内精密度和日间精密度(5 d)。测得的精密度结果RSD值均<2.0%,表明取样精密度良好。

2.4.6 重复性实验 精密称取同一批号的2种纳米粒QPN 2.67 mg、QPTN 1.85 mg 各5份,用适量丙酮溶解后减压回收丙酮,残留物加入适量甲醇涡旋混匀,转移至50 mL量瓶中,再用甲醇定容至刻度。按“2.4.2”项色谱条件测定峰面积(A),计算样品中QT的含量。测得QPN中槲皮素含量的RSD为1.8%,QPTN中槲皮素含量的RSD为1.5%,表明该方法重复性好。

2.4.7 加样回收率实验 精密称取同一批号的QPN 1.33 mg、QPTN 0.92 mg各9份,用适量丙酮溶解后减压回收丙酮,残留物加入适量甲醇涡旋混匀,转移至50 mL量瓶中,每3份分别精密加入500 μg·mL-1QT对照贮备液100,400,2 100 μL,再用甲醇定容至刻度。按“2.4.2”项色谱条件测定峰面积(A),计算样品中QT的含量,以测得量与加入量比较,计算相对回收率。结果QPN中QT平均回收率为100.6%(RSD=1.3%);QPTN中QT平均回收率为99.9%(RSD=1.1%),表明此法用于测定样品含量的准确度好。结果见表1。

2.4.8 稳定性实验 精密称取同一批号的QPN 1.67,2.67,8.33 mg及QPTN 1.16,1.85,5.79 mg各1份,按“2.4.6”项配成低、中、高浓度样品溶液,余下操作同“2.4.6”项,分别测定0,0.5,1,2,4,6,12,24,48 h时峰面积(A)。测得QPN和QPTN低、中、高浓度样品溶液的RSD分别为1.5%,1.3%,1.4%和1.6%,1.5%,1.8%,表明样品溶液在48 h内稳定。

表1 QPN和QPTN中QT回收实验结果
Tab.1 Recovery results of QT in QPN and QPTN mg,n =9
样品量 样品中
QT量
加入量 测得量 回收率/
%
QPN
1.33 0.200 0.050 0.250 100.0
1.36 0.204 0.050 0.255 102.0
1.32 0.198 0.050 0.249 102.0
1.35 0.203 0.200 0.400 98.5
1.33 0.200 0.200 0.400 100.0
1.34 0.201 0.200 0.401 100.0
1.56 0.234 1.050 1.298 101.3
1.32 0.198 1.050 1.273 102.4
1.35 0.203 1.050 1.249 99.6
QPTN
0.93 0.201 0.050 0.251 100.0
0.92 0.199 0.050 0.248 98.0
0.94 0.203 0.050 0.253 100.0
0.95 0.205 0.200 0.402 98.5
0.93 0.201 0.200 0.402 100.5
0.94 0.203 0.200 0.402 99.5
0.96 0.207 1.050 1.271 101.3
0.95 0.205 1.050 1.253 99.8
0.93 0.201 1.050 1.271 101.9

表1 QPN和QPTN中QT回收实验结果

Tab.1 Recovery results of QT in QPN and QPTN mg,n =9

2.4.9 载药量和包封率测定 精密称取同一批号QPN 2.67 mg及QPTN 1.85 mg 各5份,按“2.4.6”项配制溶液,余下按“2.4.2”项色谱条件测定峰面积(A)。根据标准曲线方程计算样品中QT的含量。 载药量(%)=(纳米粒药物质量/纳米粒质量)×100%;包封率(%)=全部纳米粒药物质量/制备时投药质量×100%=(全部纳米粒质量×载药量)/制备时投药质量×100%。结果测得QPTN中QT载药量、包封率分别为(21.6±2.8)%,(93.7±2.9)%(n=6),QPN中QT载药量、包封率分别为(15.0±1.5)%,(64.6 ±1.6)%(n=6),表明QPTN比QPN具有更大的载药量(P<0.05)和包封率(P<0.01)。

2.5 释放度的测定

精密称取QT原料药2.4 mg、含有相同QT量的QPN 16.0 mg及QPTN 11.1 mg各6份,分别加入溶有2.0%SDS的磷酸盐缓冲溶液(PBS,pH 值7.4,取磷酸二氢钾1.36 g,加0.1 mol·L-1氢氧化钠溶液79 mL,用水稀释至200 mL,即得)5 mL中,分散均匀后,再分别放入透析袋(MWCO=1 000)中,置于加有PBS25 mL的烧杯中,在37 ℃,120 r·min-1摇床中放置,于0,0.25,1,2,3,4,5,7,9,12,15,18,21,24,27,30 d精取透析液15 mL(同时加入等温PBS15 mL),将15 mL透析液减压蒸干后用适量甲醇复溶,余下操作同“2.4.2”项测定峰面积(A),测定样品中QT的含量。Q(%)=(V0×Ct+V× t = 1 t Ct-1)×W-1×DL-1×100,Ct为各时间点测得释放介质中的QT浓度(mg·mL-1),V0为释放介质的总体积(mL),V为每次取样体积(mL),W为投入的纳米粒的总质量(mg),DL为测得纳米粒的载药量(%)。结果见表2。结果表明,原料药QT在3 d时已经释放完全,达到100.3%,2种NPs分别为29.6%,52.5%,NPs与QT原料药相比具有明显的缓释作用。而后2种NPs的释放总体趋势相同,说明NPs释放有一定的规律性,从而体现出多次药物释放效应。这种多次释放效应说明药物并非仅仅的被包载进NPs的中心,而是被镶嵌或包载在载体内,当表层的材料缓慢降解,材料内药物被逐步释放出来,形成较好的缓释效果。7 d后达到稳定的扩散阶段,到30 d时QPN中QT累积释放量为68.8%,而QPTN达到85.8%,显著高于QPN(P<0.05)。

3 讨论

笔者在本研究通过处方工艺控制使QT高度分散在载体材料中,由于材料包在外面对药物具有保护作用,可避免QT在长期贮存与空气直接接触及体内给药后可能被氧化,从而增加药物的体外稳定性;同时通过控制纳米粒的粒径大小、表面电荷,可将QT被动靶向于肝脏,再通过肝癌细胞的摄取作用,药物在纳米粒中以完整的形式进入到靶细胞内,这样既解决QT水溶性较小不能溶解于体液中、限制其吸收,又解决QT脂溶性也较差、不利于其跨膜转运吸收的问题,更好发挥QT对肝癌的抑制作用。

预实验时选择QT测定波长为254 nm,甲醇:4.3%乙酸溶液(55:45)为流动相,结果显示在此波长下流动相的干扰较严重,乙酸的浓度虽然较高,但由于QT有较多的酚羟基,色谱峰形有拖尾的现象,对称性较差;经过筛选确定测定波长为370 nm(同时在此波长下PLGA-TPGS无吸收,因其含有与PLGA相同的结构单元,故可确定PLGA也无吸收),甲醇-0.03%磷酸溶液(3:2)为流动相,由于磷酸的酸性较强,能较好抑制酚羟基的解离;但此流动相水含量较高,易产生气泡,使用单泵效果较好。

表2 QT原料药、QPN和QPTN的体外累积释放率
Tab.2 Cumulative release ratio of raw QT, QPN and QPTN in vitro %,x¯±s,n=6
时间/d QT QPN QPTN
0 0 0 0
0.25 32.8±2.1 9.1±1.9 18.3±1.9
1 89.5±1.9 18.9±1.7 29.8±1.8
2 98.1±1.7 27.2±2.1 37.4±2.4
3 100.3±1.8 29.6±1.8 52.5±2.3*1
4 - 32.8±1.4 56.7±2.1*1
5 - 40.7±1.2 58.6±2.0*1
7 - 43.4±1.5 67.4±2.5*1
9 - 49.5±1.6 71.9±2.6*1
12 - 55.4±1.0 73.2±2.7*1
15 - 57.7±1.4 77.5±2.2*1
18 - 60.1±1.3 79.1±2.3*1
21 - 61.9±1.1 81.7±2.4*1
24 - 66.3±1.5 83.4±2.8*1
27 - 68.1±1.7 85.2±2.1*1
30 - 68.8±1.4 85.8±2.8*1

Compared with QPN,*1P<0.05

与QPN比较,*1P<0.05

表2 QT原料药、QPN和QPTN的体外累积释放率

Tab.2 Cumulative release ratio of raw QT, QPN and QPTN in vitro %,x¯±s,n=6

在体外释放实验中,由于QT在水中溶解性极差(约为0.27 μg·mL-1),选用含2.0%SDS的PBS作释放介质,能有效增加QT溶解度(约为403 μg·mL-1)。本实验称取QT原料药和2种纳米粒中的QT含量都是2.4 mg,用2.0%SDS的PBS 6 mL能使其全部溶解配成饱和溶液,选用在30 mL释放介质进行测定已经满足漏槽条件的要求(一般释放介质的体积为药物饱和溶液所需释放介质体积的3~5倍);由于测定的QT量较少,取样体积小时QT含量低不利于测定,故选择取样15 mL,再用适量的溶剂稀释使其浓度在线性范围内,且在该色谱条件下2种载体PLGA和PLGA-TPGS以及释放介质中的SDS对QT的测定均无干扰。QPTN及QPN在释放中呈现双相释放,初期的突释是由于2种NPs均属于纳米球,药物均匀分布在整个球体中,在释放介质中表面分布的药物首先释放出来(在体内可以发挥初期的治疗作用),当突释结束后,分布在NPs骨架内部的药物需要在载体材料降解过程中释放,因此出现后期的缓释现象。

30 d后观察到QPTN的累积释放率显著高于QPN,是由于自制材料PLGA-TPGS的分子量(相对分子质量 21 000~22 000)较市售PLGA(相对分子质量40 000~75 000)小,同时PLGA-TPGS具有较高的亲水性。QPTN中QT以及PLGA都为脂溶性不易溶于水,因此QT不易从载体材料中释放出来,而TPGS是一种乳化剂,同时具有亲水基团与亲脂基团,将其与PLGA进行合成,使材料PLGA-TPGS具有更好的水溶性,因此QPTN中药物释放更完全,累积释放率较高。有关QPTN在体外对肝癌细胞的抑制性、在体内对肝癌动物模型肝脏的靶向性、治疗效果等有待进一步研究。

The authors have declared that no competing interests exist.

参考文献

[1] 骆明旭,罗丹,赵万红.槲皮素药理作用研究进展[J].中国民族民间医药,2014,17:12-14.
槲皮素是一种天然的黄酮类物质,具有抗肿瘤、抗氧化、抗感染、免疫抑制、心血管保护和血糖调节等多种药理作用。近年来,槲皮素因其生物活性强、药理作用广泛、副作用小而受到众多学者的关注。本文综述近10年槲皮素药理作用的研究进展,指出了目前存在的主要问题及今后研究的方向,以期对槲皮素的进一步研究有一定的指导作用。
[本文引用:1]
[2] 张志琴,朱双雪.槲皮素的药理活性与临床应用研究进展[J].药学研究,2013,32(7):400-403,433.
槲皮素是一种广泛存在于植物界的黄酮类化合物,具有多种生物学活性和极高的药用价值.本文对槲皮素抗癌、抗氧化、抗纤维化、抗炎等方面的药理作用研究进展进行综述,并探讨和展望其在临床治疗中的应用及前景.
URL    
[本文引用:1]
[3] DAJAS F.Life or death:neuroprotective and anticancer eff-ects of quercetin[J].J Ethnopharmacology,2012,143(2):383-396.
Abstract ETHNOPHARMACOLOGICAL RELEVANCE: Quercetin is a ubiquitous flavonoid that is present in numerous plants that are utilized in many different cultures for their nervous system and anticancer effects. To better understand the neuroprotective and antiproliferative activities of quercetin, we present a comprehensive review of the divergent actions that contribute to the ethnopharmacological profile of these plants. RESULTS: The pharmacological activities of quercetin that modulate antioxidation/oxidation/kinase-signaling pathways might be differentially elicited in neurons compared with malignant cells, ultimately promoting cell survival or death in a cell type- and metabolism-specific manner. Whereas the broad antioxidation and anti-inflammatory activities of quercetin are important for neuronal survival, the oxidative, kinase- and cell cycle-inhibitory, apoptosis-inducing effects of quercetin are essential for its anticancer effects. The diverse mechanistic interactions and activities of quercetin that modulate the phosphorylation state of molecules as well as gene expression would alter the interconnected and concerted intracellular signaling equilibrium, either inhibiting or strengthening survival signals. These mechanisms, which have been mainly observed in in vitro studies, cannot be easily translated into an explanation of the divergent simultaneous neuroprotective and anticancer effects observed in vivo. This is in part due to low bioavailability in plasma and in the brain, as well as the nature of the actual active molecules. CONCLUSIONS: Numerous studies have demonstrated the beneficial effects of chronic quercetin intake, which is ethnopharmacologically meaningful, as many plants that are chronically ingested by people contain quercetin. Although quercetin and quercetin-containing plants exhibit potential as therapeutic modalities in neuropathology and in cancer, the data collectively highlight the need to elucidate issues such as bioavailability as well as its correlation with effectiveness at biomarkers in vivo. There would be an increased potentential of these plants for chemoprevention and neuropathology prevention. Copyright 脗漏 2012 Elsevier Ireland Ltd. All rights reserved.
DOI:10.1016/j.jep.2012.07.005      PMID:22820241      URL    
[本文引用:0]
[4] ZHAO P,MAO J M,ZHANG S Y,et al.Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis[J].Oncol Lett,2014,8(2):765-769.
Abstract Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 脦录M exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.
DOI:10.3892/ol.2014.2159      PMID:250096542      URL    
[本文引用:0]
[5] CASELLA M L,PARODY J P,CEBALLOS M P,et al.Quercetin prevents liver carcinogenesis by inducing cell cycle arrest,decreasing cell proliferation and enhancing apoptosis[J].Mol Nutr Food Res,2014,58(2):289-300.
Quercetin is the most abundant flavonoid in human diet. It has special interest as it holds anticancerous properties. This study aims to clarify the mechanisms involved in quercetin effects during the occurrence of preneoplastic lesions in rat liver.Methods and resultsAdult male Wistar rats were subjected to a two-phase model of hepatocarcinogenesis (initiated-promoted group). Initiated-promoted animals also received quercetin 10 and 20 mg/kg body weight (IPQ10 and IPQ20 groups, respectively). Antioxidant defenses were modified by quercetin administration at both doses. However, only IPQ20 group showed a reduction in number and volume of preneoplastic lesions. This group showed increased apoptosis and a reduction in the proliferative index. In addition, IPQ20 group displayed a reduction of cell percentages in G1 and S phases, accumulation in G2, and decrease in M phase, with reduced expression of cyclin D1, cyclin A, cyclin B, and cyclin-dependent kinase 1. Interestingly, peroxisome proliferator activated receptor- levels were reduced in IPQ20 group.ConclusionThe outcomes of this study represent a significant contribution to the current understanding on the preventive mechanisms of quercetin during the early stages of liver cancer development, demonstrating that in addition to its known proapoptotic characteristics, the flavonoid modulates the expression of critical cell cycle regulators and peroxisome proliferator activated receptor- activity.
DOI:10.1002/mnfr.201300362      PMID:24124108      URL    
[本文引用:1]
[6] JAIN R A.The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices[J].Biomaterials,2000,21(23):2475-2490.
A considerable research has been conducted on drug delivery by biodegradable polymeric devices, following the entry of bioresorbable surgical sutures in the market about two decades ago. Amongst the different classes of biodegradable polymers, the thermoplastic aliphatic poly(esters) like poly(lactide) (PLA), poly(glycolide) (PGA), and especially the copolymer of lactide and glycolide, poly(lactide-co-glycolide) (PLGA) have generated immense interest due to their favorable properties such as good biocompatibility, biodegradability, and mechanical strength. Also, they are easy to formulate into different devices for carrying a variety of drug classes such as vaccines, peptides, proteins, and micromolecules. Also, they have been approved by the Food and Drug Administration (FDA) for drug delivery. This review discusses the various traditional and novel techniques (such as in situ microencapsulation) of preparing various drug loaded PLGA devices, with emphasis on preparing microparticles. Also, certain issues about other related biodegradable polyesters are discussed.
DOI:10.1016/S0142-9612(00)00115-0      PMID:11055295      URL    
[本文引用:1]
[7] GUO Y,LUO J,TAN S,et al.The applications of vitamin E TPGS in drug delivery[J].Eur J Pharm Sci,2013,49(2):175-186.
Abstract D-伪-Tocopheryl polyethylene glycol 1000 succinate (simply TPGS or Vitamin E TPGS) is formed by the esterification of Vitamin E succinate with polyethylene glycol 1000. As novel nonionic surfactant, it exhibits amphipathic properties and can form stable micelles in aqueous vehicles at concentration as low as 0.02 wt%. It has been widely investigated for its emulsifying, dispersing, gelling, and solubilizing effects on poorly water-soluble drugs. It can also act as a P-glycoprotein (P-gp) inhibitor and has been served as an excipient for overcoming multidrug resistance (MDR) and for increasing the oral bioavailability of many anticancer drugs. Since TPGS has been approved by FDA as a safe pharmaceutic adjuvant, many TPGS-based drug delivery systems (DDS) have been developed. In this review, we discuss TPGS properties as a P-gp inhibitor, solubilizer/absorption and permeation enhancer in drug delivery and TPGS-related formulations such as nanocrystals, nanosuspensions, tablets/solid dispersions, adjuvant in vaccine systems, nutrition supplement, plasticizer of film, anticancer reagent and so on. This review will greatly impact and bring out new insights in the use of TPGS in DDS. Copyright 漏 2013 Elsevier B.V. All rights reserved.
DOI:10.1016/j.ejps.2013.02.006      PMID:23485439      URL    
[本文引用:1]
[8] BAO X,GAO M,XU H,et al.A novel oleanolic acid- load-ed PLGA-TPGS nanoparticle for liver cancer treatment[J].Drug Devel Indust Pharm,2015,41(7):1193-1203.
Hepatocellular carcinoma is the third most common cause of cancer death. Oleanolic acid (OA) is a natural triterpenoid, has many important biological actions, including antitumor effect, but its poor solubility often leads to poor pharmacodynamics. The aim of our work is to make OA-loaded poly (lactide-co-glycolide)-d-伪-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) nanoparticles (OPTN) to improve its efficacy to liver cancer and characterize it. OPTN were prepared by ultrasonic emulsification-solvent evaporation technique using PLGA with or without the addition of TPGS (OPN). The coumarin-6-loaded nanoparticles were used as a fluorescence marker. The nanoparticles were characterized for surface morphology, surface charge, particle size, drug loading, encapsulation efficiency, in vitro drug-release, cellular uptake, cytotoxicity by human liver cancer cell line HepG2 cells, and therapeutic effect in vivo. The prepared nanoparticles were found to be spherical in shape. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake and cytotoxicity of OPTN in the HepG2 cells compared with that of OPN. The treatment of OPTN group was better than OPN and FS groups in vivo. The results showed advantages of OPTN in terms of sustainable release and efficacy in liver cancer chemotherapy compared with OPN. OPTN could be acted as a novel and new dosage form to be used in cancer treatment study.
DOI:10.3109/03639045.2014.938081      PMID:25026246      URL    
[本文引用:1]
[9] LIU H,GAO M,XU H,et al.A promising emodin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy[J].Pharm Res,2016,33(1):217-236.
Emodin (EMO) has multi-targets and multi-way antitumor effect, which was limited by the instability and poor solubility of EMO. The aim of this study was to formulate EMO-loaded poly (lactide-co-glycolide)-d-伪-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) nanoparticles (EPTN) to increase the liver targeting of EMO for cancer therapy.EMO/coumarin-6-loaded PLGA-TPGS nanoparticles (ECPTN) and EMO-loaded PLGA nanoparticles (EPN) were also prepared as comparison. The cellular uptake of ECPTN by HepG2 and HCa-F cells was investigated using Confocal laser scanning microscopy. The apoptosis of HepG2 cells handled with EPTN was assayed by flow cytometry. The liver targeting property of ECPTN in mice was evaluated using the drug concentration determined by RP-HPLC and the freezing slices were investigated via fluorescence inversion microscopy. The blood samples were obtained from vein intubation to illustrate the pharmacokinetics process of EPTN. The tumor-bearing mice model was established to elucidate the in vivo therapeutic effect of EPTN.The results demonstrated that ECPTN could be internalized by HepG2 and HCa-F cells respectively. The ratio of apoptosis cells was increased after dealing with EPTN. The detection indexes of drug concentration and fluorescence inversion microscopy images indicated ECPTN had an excellent effect on liver targeting property than EMO solutions (EMS). The pharmacokinetics process of EPTN showed obvious sustained-release effect than EMS. Compared with EPN, the in vivo antitumor activity of EPTN against tumor cells were better.In conclusion, EPTN could be used in the treatment of liver cancer acted as a kind of promising intravenous dosage forms.
DOI:10.1007/s11095-015-1781-4      PMID:26334502      URL    
[本文引用:0]
[10] 顾晓华,王轩,安磊,.齐墩果酸/PLGA-TPGS纳米粒的制备及其体外释放行为研究[J].中国药房,2012,23(29):2726-2728.
目的:制备齐墩果酸/乳酸羟基乙酸共聚物-水溶性维生素E衍生物(PLGA-TPGS)纳米粒(OPN)并考察其体外释放情况。方法:用自制的PLGA-TPGS为载体材料,采用超声乳化-溶剂挥发法制备OPN,考察其粒径、Zeta电位、载药量、包封率、体外累积释放率。结果:所制OPN的平均粒径为(202.4±1.2)nm,Zeta电位为(-21.5±2.2)mV,载药量为(27.65±2.27)%,包封率为(92.52±2.15)%,其在含1.0%十二烷基硫酸钠的磷酸盐缓冲液(pH7.4)中呈两相释放,432h时累积释放率为(93.8±2.9)%。结论:所制OPN质量稳定、可控,具有明显的体外缓释作用。
URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
槲皮素
纳米粒
载药量
包封率

Quercetin
Nanoparticles
Drug loading
Entrapment efficiency

作者
徐红
张成鸿
关欣
董浩
贾续东
刘长松
高萌
田燕

XU Hong
ZHANG Chenghong
GUAN Xin
DONG Hao
JIA Xudong
LIU Changsong
GAO Meng
TIAN Yan