中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
HERALD OF MEDICINE, 2018, 37(1): 20-26
doi: 10.3870/j.issn.1004-0781.2018.01.005
木犀草素调控非小细胞肺癌上皮间质转化的分子机制*
Molecular Mechanism of Luteolin-regulated Epithelial Mesenchymal Transition in Non-small Cell Lung Cancer
阮君山1,2,, 周欢1, 蒋宗胜3, 王少明1,2

摘要:

目的 探讨木犀草素调控非小细胞肺癌上皮-间质转化(EMT)的分子机制。方法 首先借助分子对接技术研究木犀草素可能的作用靶点,再通过流式细胞检测技术验证对接的结果。结果 分子对接结果表明木犀草素与整合素家族具有很好的对接作用,其中与整合素αIIbβ3在对接过程中能量最低,为-15.11;流式细胞检测结果显示,木犀草素可以下调低氧所诱导的整合素表达。结论 木犀草素可以抑制整合素的表达,据此推测木犀草素可以通过整合素来调控EMT,为中医药防治肿瘤转移提供新的思路。

关键词: 木犀草素 ; 上皮-间质转化 ; 分子对接 ; 整合素

Abstract:

Objective To investigate the molecular mechanism of luteolin-regulated epithelial-mesenchymal transition(EMT) in non-small cell lung cancer. Methods Firstly,the potential target of luteolin was studied by molecular docking.The effect of luteolin on EMT markers was analyzed,and then molecular biology experiments were used to verify the results. Results The result of molecular docking showed that luteolin had a good docking effect on the integrin family,of which the lowest binding energy was -15.11 in docking with Integrin αIIbβ3.The result of flow cytometry showed that luteolin could down-regulate the expression of integrin induced by hypoxia. Conclusion Luteolin can regulate integrin expression ,which suggested that luteolin can regulate EMT through integrin.This conclusion may provide new methods in prevention of tumor metastasis for traditional Chinese medicine.

Key words: Luteolin ; Epithelial-mesenchymal transition ; Molecular docking ; Integrin

木犀草素(luteolin) 属于黄酮类植物化学物,其化学名为:3',4',5,7-四羟黄酮(C15H10O6,CAS491-70-3),其结构见图1。木犀草素主要存在夏枯草、白花蛇舌草、石见穿、石上柏、鱼腥草、败酱草、半枝莲、金银花、菊花、荆芥等中药。研究表明其具有抗菌、抗炎、保护心血管、解痉、祛痰、抑制酶活性、免疫调节、抗氧化、抗辐射、改善帕金森病、利尿、利胆、抗纤维化等药理作用[1-5]。近年来,木犀草素在抗肿瘤方面的作用引起关注。研究发现木犀草素能干预细胞生长周期,抑制肿瘤细胞增殖[5-6];可抑制DNA拓扑异构酶,增敏肿瘤坏死因子(TNF-α)和Trail诱导的多种肿瘤细胞凋亡[7];能增强Gefitinib对EGF 信号通路的调控[8];抑制血管生成、抑制前列腺癌PC3细胞的侵袭转移[9-10]

图1 木犀草素的化学结构

Fig.1 Chemical stucture of luteolin

上皮间质转化(epithelial-mesenchymal transition,EMT)的发生是多种细胞因子生长因子共同作用的结果。大量的信号通过细胞膜表面受体将信号转导入细胞内,因此而造成肿瘤细胞EMT相关蛋白的表达发生改变。肿瘤细胞一旦由上皮形态的细胞转化为间质化形态,肿瘤的增殖能力和侵袭转移能力将显著增强[11-12]。研究表明,木犀草素能有效地干预肿瘤的侵袭转移,抑制肿瘤的恶性进程,与它在EMT中的干预作用有关,但其中的分子机制尚不明确。

分子对接(molecular docking)技术是近年来发展迅速的计算机辅助药物设计的一项新兴技术。其通过配体与受体相互作用的“锁-钥匙”原理,模拟小分子配体与受体生物大分子之间的潜在作用[13]。通过计算模拟,可以有效预测药物与其靶点的结合模式和亲和力,从而进行药物的虚拟筛选[14]。为了探寻木犀草素对EMT的作用靶点,笔者采用分子对接技术,对EMT过程中的重要分子蛋白及靶点进行了模拟筛选,并对筛选后的结果进行实验验证。

1 材料与方法
1.1 实验细胞

H1975、A549人非小细胞肺癌细胞株,购自中国科学院上海细胞库。

1.2 试剂

RPMI1640(加拿大维森特公司,批号:35000006);胎牛血清(加拿大维森特公司,批号:086-110);木犀草素,含量98%,购自西安和霖生物工程有限公司;兔抗人Integrin αIIbβ3抗体和山羊抗兔二抗购自美国Cell Signaling Technology公司。

1.3 木犀草素三维结构分子的准备

木犀草素的结构来源于NCBI网站(PubChem Compound,CID:5280805),在PubMed网站上下载后缀名为sdf的木犀草素文件,然后使用UCSF Chimera分子图形软件制备分子(Prepping Molecules),将木犀草素的平面结构转化为三维结构,对其结构进行加极性氢(essential hydrogen)、加电子、合并非极性氢原子、计算Gasteiger-Htiekel电荷等常规处理,最后使用MM2算法对木犀草素的三维结构进行能量最小化优化(迭代次数1 000次,最小的均方根RMS梯度为0.10 nm)。将能量最优化的即最稳定的木犀草素结构转化生成PDB格式文件,以备使用。使用AutoDockTools(ADT)软件定义木犀草素分子的柔性部分(可旋转键),以PDBQT格式存储,己备Autogrid使用。

1.4 对接参数的设置

使用Autodock软件,应用拉马克(LGA)遗传算法,将局部能量搜索与遗传算法相结合,以半经验势函数作为能量打分函数,搜索小分子构象和位置。对接选用的受体格点盒子大小为2.25 nm×2.25 nm×2.25 nm (60点×60点×60点),格点间距为0.375 nm,格点盒子中心位于各个蛋白活性位点的中心。为了提高底物分子在对接过程中的柔性,使每次计算更为充分,从而得到更精确的结果,采用了较大的运算参数,将该算法中的种群数ga_pop_size (此命令是设置种群中个体的数目,每个个体都是由基因型和相关的表型组成的复合体)从默认值100增大为150,能量评估的最大值ga_n μM_evals (此命令设置在遗传算法计算过程中能量评定的最大次数)由默认值2 500 000增大为10 000 000,运算循环数从默认值10增大为100,其余参数使用默认值。对接计算在3.75 nm×3.75 nm×3.75 nm的矩形框中进行。

1.5 对接受体的获取

参照文献[15-16],从专业数据库获取蛋白质结构。蛋白质数据库RCSB的PDB数据库(http://www.rcsb.org/pdb/home/home.do)是一个专业收集包括蛋白质和核酸在内的生物大分子三级结构的数据库,于1971年由美国的布鲁克海文(Brookhaven)国家实验室创建。这些是构成包括细菌、酵母、植物、苍蝇、其他动物以及人类在内的生命体的基本分子。因参与肿瘤EMT过程的几大蛋白的三维晶体结构信息均可在蛋白质数据库RCSB的PDB数据库中(http://www.rcsb.org/pdb/home/home.do)上获得。从BIDD(Bioinformatics and Drug Design group)治疗性靶标数据库(Therapeutic Target Database)中收集对接受体(调控EMT的关键蛋白),包括现有常见药物靶标,结合调控EMT的几大因子,在PDB数据库搜索晶体结构,选出共20个靶标,其PDB代码见表1。对接前将配体从蛋白——配体复合物中去除后,得到各个目的蛋白的空间结构及活性口袋空间位点。通过用户图形界面ADT1.5.4版本软件中Select功能下Select from string将各个膜蛋白三维结构文件去掉水分子;同理用Select功能下Select from string窗口中Residue键入ARG8,判定对这些膜蛋白中是否含有柔性残基白;用Edit功能下Hydrogens进行加氢、合并非极性的氢,计算Gasteiger-Huekel电荷。最后以PDB格式存储,进行格式转化成PDBQT,以备Autogrid使用。

表1 蛋白PDB号、活性口袋等相关参数
Tab.1 Parameters of protein PDB number and their active pockets
目的蛋白质 PDB X Y Z 长度 参考文献(第一作者、杂志名、年份)
TGF-betaR 2X7O 16.956 -4.82 2.512 342 ROTH GJ.J Med Chem,2010
EGFR 3IKA 98.27 14.08 23.68 331 ZHOU W.Nature,2009
VEGFR 2XIR -9.236 68.598 44.359 316 IYER SJ .Biol Chem,2010
HGFR 2UZX 46.876 -34.983 130.84 289 NIEMANN HH.Cell,2007
C-Met 3R7O 90.38 100.79 -45.784 307 RICKERT KW.J Biol Chem,2011
PDGFR 1GQ4 -89.2.56 92.143 5.671 90 KARTHIKEYAN S.J Biol Chem,2002
E-cadherin 2QVF 49.341 -19.34 94.43 213 HAUSSINGER D.EMBO J,2008
N-cadherin 1NCI 24.57 56.784 100.35 110 SHAPIRO L.Nature,1995
beta-catenin 3SLA 56.498 -155.37 24.46 168 EVRARD-TODESCHI N.J Chem Inf Model,2008
IGFR 2ZM3 159.40 35.76 98.358 308 EPA VC.Protein Eng Des Sel,2006
Integrin αVβ3 1JV2 239.03 1.676 -56.140 1649 XIONG JP.Science,2001
Integrin α6β1 1AOX 98.013 -69.396 -64.13 1078 EMSLEY J.J Biol Chem,1997
Integrin αIIbβ3 3FCS -43.654 154.93 -15.67 1649 ZHU J.Mol Cell,2008
Integrin αVβ6 3F7Q 90.256 -4.254 -67.356 896 DE PEREDA JM.EMBO J,2009
Integrin α1β1 1CK4 35.574 6.094 -57.835 198 NOLTE M.FEBS Lett,1999
Twist 1AO5 12.673 -45.670 111.56 237 TIMM DE.Protein Sci,1997
Snail 1Y62 -25.268 -178.63 9.352 160 UTSINTONG M.J Biomol Screen,2009
Slug 4MBA 79.36 -67.350 56.394 147 BOLOGNESI M.J Mol Biol,1989
Claudin-1 2QUO 100.43 -3.673 89.64 126 VAN ITALLIE CM.J Biol Chem,2008
Valentine 1PVL 67.386 -90.252 6.327 301 PEDELACQ JD.Structure,1999
Wnt 4FOA -17.954 11.393 -13.741 316 KAKUGAWA S.Nature,2015

表1 蛋白PDB号、活性口袋等相关参数

Tab.1 Parameters of protein PDB number and their active pockets

1.6 细胞培养

取对数生长期的A549、H1975细胞,磷酸盐缓冲液(PBS)洗涤2次,加入0.25%胰蛋白酶(含0.02%乙二胺四乙酸)2 mL,37 ℃消化5 min。倒置显微镜下观察细胞分散情况,防止消化过度。加入小牛血清0.1 mL终止消化,吹散细胞并转移至10 mL离心管中,1 000 r·min-1离心5 min,用新鲜培养液2 mL混悬,取少量进行细胞计数,并调整细胞浓度至1×106·L-1,接种于培养皿中,待细胞生长至70%~80%融合,除空白组外,实验组中加入木犀草素(分子量为286.23,为浅黄色粉末,稍溶于水,易溶于乙醇、苯、乙醚等有机溶剂)终浓度分别为0,5,10,15,25 μmol·L-1,低氧培养条件为5% 氧气、5%二氧化碳、90%氮气,培养24 h。将木犀草素溶于二甲亚砜(DMSO)中,配制成10 mmol·L-1木犀草素母液,经孔径0.2 μm滤器滤过,按每管500 μL 分装,-20 ℃存储。

1.7 流式细胞检测

用10 mmol·L-1乙二胺四乙酸收集不同浓度(5,10,15,25 μmol·L-1)木犀草素处理的人A549、H1975细胞和未经处理的正常对照组细胞,用羊血清在4 ℃下封闭10 min。所有细胞经PBS漂洗1次后,分别使用抗Integrin αIIbβ3单克隆抗体4 ℃处理30 min,然后用PBS漂洗2次。细胞用标记了藻红蛋白的二抗4 ℃处理20 min,再用PBS漂洗2次。用PBS重悬液0.5 mL上流式细胞仪进行分析,测定处理组和正常对照组细胞表面Integrin αIIbβ3的表达情况。

2 结果
2.1 木犀草素的作用靶点

分子对接结果显示木犀草素的作用靶点为Integrin。在PudMed下查询出目的蛋白的标准Mesh词汇,在Protein Data Bank数据库中搜索目的蛋白的晶体结构,其PDB代码、参数信息见表1。

虚拟对接过程中,Autodock软件将木犀草素的10个不同空间构象分别于目的受体/蛋白在活性口袋进行计算机拟合,之后软件给予木犀草素与蛋白结合评分,其对接示意图见图2,计算机虚拟对接情况见表2。

图2 木犀草素与目的蛋白结合示意图

Fig.2 Docking diagram of luteolin and target protein

表2 木犀草素与目的蛋白虚拟结合能量及结合参数
Tab.2 Virtually intermolecular energy and binding parameter between luteolin and target protein
目的蛋白质 PDB 对接能量 kI/(nmol·L-1) 分子间能量 内部能量 扭转能量 未对接扩展能量
Integrin αIIbβ3 3FCS -15.11 80.48 -7.79 -2.30 2.98 -2.30
Integrin αVβ6 3F7Q -14.08 106.65 -5.49 -1.50 2.09 -1.50
Integrin αVβ3 1JV2 -13.08 187.67 -3.76 -1.49 2.12 -1.59
Integrin α6β1 1AOX -12.98 207.56 -2.99 -2.19 3.03 -2.69
Integrin α1β1 1CK4 -11.34 209.89 -2.58 -0.28 1.79 -0.28
Valentine 1PVL -8.32 199.37 -2.95 -1.32 3.01 -1.39
beta-catenin 3SLA -7.24 99.87 -1.56 -0.24 -1.45 0.44
IGFR 2ZM3 -5.78 104.83 -3.69 -3.91 -2.48 1.56
TGF-betaR 2X7O -5.63 87.46 -11.12 -0.48 1.49 -0.48
HGFR 2UZX -3.55 100.79 -9.55 0.00 0.00 0.00
C-Met 3R7O -1.56 100.83 -2.67 -0.89 3.7 -2.93
Claudin-1 2QUO -1.46 200.43 -0.33 -3.07 1.29 -3.07
N-cadherin 1NCI -0.98 139.56 -3.7 -1.39 0.00 -2.78
Slug 4MBA -0.59 134.78 -4.59 -5.10 0.29 -2.50
Twist 1AO5 -0.34 194.68 -4.51 -1.87 0.13 -6.18
VEGFR 2XIR 1.14 200.02 -10.33 -0.37 1.19 -0.37
Wnt 4FOA 2.37 183.35 -8.48 -0.92 1.23 -3.62
E-cadherin 2QVF 4.67 110.56 -3.12 -2.59 1.03 -1.93
EGFR 3IKA 8.68 435.15 -8.68 0.00 0.00 0.00
Snail 1Y62 9.56 198.56 -4.76 -1.39 1.22 -5.19
PDGFR 1GQ4 10.79 89.23 -1.45 -1.57 0.00 -1.86

表2 木犀草素与目的蛋白虚拟结合能量及结合参数

Tab.2 Virtually intermolecular energy and binding parameter between luteolin and target protein

对接结果显示,木犀草素与PDGFR等调控EMT蛋白的对接能量为正值,提示木犀草素与这些蛋白的作用相比较与能量为负值的蛋白可能不是主要因素。对接能量为负值的结果中发现与Integrin等膜蛋白比较,木犀草素对E-cadherin和N-cadherin的对接能量较低,这也提示木犀草素对EMT的作用可能不是直接与E-cadherin或N-cadherin结合而发挥的。

进一步的分析发现,与Integrin的对接能量值比较,木犀草素对EMT调控的几个转录因子如Twist、Snail等对接的能量值亦较低,提示木犀草素对EMT调控可能不是通过binding这几个转录因子产生的。表2显示,木犀草素与Integrin αIIbβ3在对接过程中能量最低,因此选取木犀草素10个构象中结合自由能最低的构象用来做进一步的分析。Integrin αIIbβ3与木犀草素的相互作用见图3。

图3 Integrin αIIbβ3和木犀草素的相互作用

Fig.3 Interaction between Integrin αIIbβ3 and luteolin

图3中mu代表木犀草素(蓝色棍棒模型),红色部分为木犀草素与Integrin αIIbβ3结合部分,绿色部分表示木犀草素与Integrin αIIbβ3的结合键(氢键)。Binding Site为ASP359、THR364、HIS358、PRO327、ILE365、ARG358,两氢键Distance分别为2.206,2.081,氢键能量分别为-0.12, -1.71。从分子模拟的结构图预测了木犀草素与Integrin αIIbβ3可能存在的结合位点,因此Integrin αIIbβ3可能是其调控EMT作用的靶点。

2.2 流式细胞检测木犀草素对Integrin表达的影响

图4。图4B与图4A比较显示,低氧诱导可以升高A549细胞表面的Integrin αIIbβ3表达。图C~F分别为在低氧的条件下,采用木犀草素终浓度为5,10,15,25 μmol·L-1孵育后A549细胞表面Integrin αIIbβ3的表达情况。流式细胞结果图显示,木犀草素对于低氧诱导的A549细胞表面Integrin αIIbβ3表达的增加具有抑制作用,并且这种对于Integrin αIIbβ3表达的下调呈现出剂量依赖性。

图4 流式细胞术检测木犀草素对A549细胞Integrin αIIbβ3表达的调控作用 A.正常对照组;B.低氧组;C.5 μmol·L-1木犀草素组;D.10 μmol·L-1木犀草素组;E.15 μmol·L-1木犀草素组;F.25 μmol·L-1木犀草素组

Fig.4 Effect of luteolin on the expression of Integrin αIIbβ3 in A549 cells detected by flow cytometry A.normal control group;B.hypoxia group;C.5 μmol·L-1 luteolin group;D.10 μmol·L-1 luteolin group;E.15 μmol·L-1 luteolin group;F.25 μmol·L-1 luteolin group

图5B与图5A相比的流式细胞结果显示低氧诱导可以升高H1975细胞表面的Integrin αIIbβ3表达。图5的C~F分别为在低氧的条件下,采用木犀草素终浓度为5,10,15,25 μmol·L-1孵育后H1975细胞表面Integrin αIIbβ3的表达情况。流式细胞结果图显示,木犀草素对于低氧诱导的H1975细胞表面Integrin αIIbβ3表达的增加具有抑制作用,并且这种对于Integrin αIIbβ3表达的下调呈现出剂量依赖性。

图5 流式细胞术检测木犀草素对H1975细胞Integrin αIIbβ3表达的调控作用 A.正常对照组;B.低氧组;C.5 μmol·L-1木犀草素组;D.10 μmol·L-1木犀草素组;E.15 μmol·L-1木犀草素组;F.25 μmol·L-1木犀草素组

Fig.5 Effect of luteolin on the expression of Integrin αIIbβ3 in H1975 cells detected by flow cytometry A.normal control group;B.hypoxia group;C.5 μmol·L-1 luteolin group;D.10 μmol·L-1 luteolin group;E.15 μmol·L-1 luteolin group;F.25 μmol·L-1 luteolin group

3 讨论

低氧微环境在EMT发生过程中发挥着重要作用[17-18]。研究表明低氧可以诱导细胞分泌多种细胞生长因子如TGF-β、FGF、VEGF来刺激肿瘤的发生发展[19-21],调节和改变所处微环境,微环境被激活,可使肿瘤细胞进一步发生EMT。细胞标志蛋白如E-cadherin表达下调和N-cadherin、Vimentin表达上调是EMT发生的标志,这一变化与生长因子、信号通路、转录因子以及微环境改变如低氧等多种因素有关,是肿瘤微环境中多种细胞因子和信号通路相互作用的结果。Integrin是肿瘤细胞表面重要的黏附分子,同时也介导了胞外信号向胞内转导的过程,这些细胞因子与Integrin结合后触发细胞内信号级联反应,促使细胞发生EMT。

本实验用分子对接技术预测了木犀草素和EMT相关的一些蛋白的对接情况,结果显示木犀草素可以很好地与Integrin发生对接。流式细胞检测的结果提示,木犀草素可以和细胞表面的Integrin特异性结合,从而减少了Integrin的表达,实验结果证实了分子对接的假设。

肿瘤的侵袭和转移过程可以由多种信号通路和相关的侵袭转移蛋白所调控,并且木犀草素作为小分子中药单体,可能存在着多个靶点。仅利用分子对接的结果,尚无法说明Integrin是木犀草素干预的唯一靶点。是否在肿瘤细胞内还存在其他的药物靶点尚不明确。但不可否认的是分子对接技术作为计算机辅助模拟药物及靶点设计具有极大的利用价值。通过分子对接找到药物的可能作用靶点进而通过实验进行验证,为实验提供了正确性和可行性,可以为中药分子的机制研究提供新的思路。

The authors have declared that no competing interests exist.

参考文献

[1] TUORKEY M J.Molecular targets of luteolin in cancer[J].Eur J Cancer Prev,2016,25(1):65-76.
Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death.
DOI:10.1097/CEJ.0000000000000128      PMID:25714651      URL    
[本文引用:1]
[2] SHAIKH M F,TAN K N,BORGES K.Anticonvulsant scree-ning of luteolin in four mouse seizure models[J].Neurosci Lett,2013,550(1):195-199.
Luteolin, a common plant polyphenolic flavonoid, has antioxidant, neuroprotective, anxiolytic and anti-inflammatory properties, which led us to hypothesize that luteolin is anticonvulsant. Here, we evaluated the effects of acute and chronic luteolin injection (i.p.) in four mouse seizure models, the 602Hz model, maximal electroshock test (MEST), pentylenetetrazole (PTZ) and second hit PTZ test in the chronic stage of the pilocarpine model. Using real-time PCR mRNA levels of toll like receptor 4 (Tlr4), were quantified in the pilocarpine model, because luteolin has been shown to block the downstream signaling of TLR4. Luteolin did not exhibit any consistent anti- or pro-convulsant actions after single dosing in the 602Hz (0.3–1002mg/kg), MEST (0.3–2002mg/kg) and PTZ (302mg/kg) tests, nor after repeated daily dosing (1002mg/kg) in the 602Hz model. Tlr4 mRNA levels were upregulated 3 days after pilocarpine-induced status epilepticus (SE), but unaltered at three weeks in the chronic stage of the model. At that time, there was no effect of repeated luteolin injections (1002mg/kg, i.p.) in the second hit PTZ test, indicating that TLR-4 signaling may be not one of the main players determining the seizure threshold in this seizure model. In summary, we found no indications that luteolin is pro- or anti-convulsant in one chronic and three acute mouse seizure models.
DOI:10.1016/j.neulet.2013.06.065      PMID:23851253      URL    
[本文引用:0]
[3] THEOHARIDES T C,CONTI P,ECONOMU M.Brain inflammation,neuropsychiatric disorders,and immunoen-docrine effects of luteolin[J].J Clin Psychopharmacol,2014,34(2):187-189.
An abstract is unavailable.
DOI:10.1097/JCP.0000000000000084      PMID:24525647      URL    
[本文引用:0]
[4] AMBASTA R K,JHA S K,KUMAR D,et al.Comparative study of anti-angiogenic activities of luteolin,lectin and lupeol biomolecules[J].J Translat Med,2015,13(2):307.
Angiogenesis is a hallmark feature in the initiation, progression and growth of tumour. There are various factors for promotion of angiogenesis on one hand and on the other hand, biomolecules have been reported to inhibit cancer through anti-angiogenesis mechanism. Biomolecules, for instance, luteolin, lectin and lupeol are known to suppress cancer. This study aims to compare and evaluate the biomolecule(s) like luteolin, lupeol and lectin on CAM assay and HT-29 cell culture to understand the efficacy of these drugs. The biomolecules have been administered on CAM assay, HT-29 cell culture, cell migration assay. Furthermore, bioinformatics analysis of the identified targets of these biomolecules have been performed. Luteolin has been found to be better in inhibiting angiogenesis on CAM assay in comparison to lupeol and lectin. In line with this study when biomolecules was administered on cell migration assay via scratch assay method. We provided evidence that Luteolin was again found to be better in inhibiting HT-29 cell migration. In order to identify the target sites of luteolin for inhibition, we used software analysis for identifying the best molecular targets of luteolin. Using software analysis best target protein molecule of these biomolecules have been identified. VEGF was found to be one of the target of luteolin. Studies have found several critical point mutation in VEGF A, B and C. Hence docking analysis of all biomolecules with VEGFR have been performed. Multiple allignment result have shown that the receptors are conserved at the docking site. Therefore, it can be concluded that luteolin is not only comparatively better in inhibiting blood vessel in CAM assay, HT-29 cell proliferation and cell migration assay rather the domain of VEGFR is conserved to be targeted by luteolin, lupeol and lectin.
DOI:10.1186/s12967-015-0665-z      PMID:4575424      URL    
[本文引用:0]
[5] 何国荣,成银霞,穆鑫,.木犀草素和芦丁组合物对帕金森病模型小鼠的防治作用[J].医药导报,2015,34(5):578-584.
[本文引用:2]
[6] CHIAN S,THAPA R,CHI Z,et al.Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo[J].Biochem Biophy Res Communi,2014,447(4):602-608.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro . Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2 / mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.
DOI:10.1016/j.bbrc.2014.04.039      PMID:24747074      URL    
[本文引用:1]
[7] KAPOOR S.Luteolin and its inhibitory effect on tumor growth in systemic malignancies[J].Experimental Cell Res,2013,319(6):777-778.
Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K–Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent. - Highlights: 78 Luteolin and tumor growth in breast carcinomas. 78 Luteolin and pulmonary cancer. 78 Luteolin and colon cancer.
DOI:10.1109/OFC.2002.1036670      URL    
[本文引用:1]
[8] RHIM A D,MIREK E T,AIELLO N M,et al.EMT and dissemination precede pancreatic tumor formation[J].Cell,2012,148(1/2):349-361.
Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintaineda mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion insitu and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.
DOI:10.1016/j.cell.2011.11.025      PMID:22265420      URL    
[本文引用:1]
[9] SAKURAI M A,OZAKI Y,OKUZAKI D,et al.Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630[J].PLoS One,2014,9(6):e100124.
Cyclin G-associated kinase (GAK), a key player in clathrin-mediated membrane trafficking, is overexpressed in various cancer cells. Here, we report that GAK expression is positively correlated with the Gleason score in surgical specimens from prostate cancer patients. Embryonic fibroblasts from knockout mice expressing a kinase-dead (KD) form of GAK showed constitutive hyper-phosphorylation of the epidermal growth factor receptor (EGFR). In addition to the well-known EGFR inhibitors gefitinib and erlotinib, the dietary flavonoid luteolin was a potent inhibitor of the Ser/Thr kinase activity of GAK in vitro. Co-administration of luteolin and gefitinib to PC-3 cells had a greater effect on cell viability than administration of either compound alone; this decrease in viability was associated with drastic down-regulation of GAK protein expression. A comprehensive microRNA array analysis revealed increased expression of miR-630 and miR-5703 following treatment of PC-3 cells with luteolin and/or gefitinib, and exogenous overexpression of miR-630 caused growth arrest of these cells. GAK appears to be essential for cell death because co-administration of gefitinib and luteolin to EGFR-deficient U2OS osteosarcoma cells also had a greater effect on cell viability than administration of either compound alone. Taken together, these findings suggest that GAK may be a new therapeutic target for prostate cancer and osteosarcoma.
DOI:10.1371/journal.pone.0100124      PMID:4074034      URL    
[本文引用:1]
[10] YILMAZ M,CHRISTOFORI G.EMT,the cytoskeleton,and cancer cell invasion[J].Can Metast Rev,2009,28(1/2):15-33.
DOI:10.1007/s10555-008-9169-0      URL    
[本文引用:1]
[11] TIWARI N,GHELDOF A,TATARI M,et al.EMT as the ultimate survival mechanism of cancer cells[J].Semi Can Biology,2012,22(3):194-207.
Epithelial cancers make up the vast majority of cancer types and, during the transition from benign adenoma to malignant carcinoma and metastasis, epithelial tumor cells acquire a de-differentiated, migratory and invasive behavior. This process of epithelial–mesenchymal transition (EMT) goes along with dramatic changes in cellular morphology, the loss and remodeling of cell–cell and cell–matrix adhesions, and the gain of migratory and invasive capabilities. EMT itself is a multistage process, involving a high degree of cellular plasticity and a large number of distinct genetic and epigenetic alterations, as fully differentiated epithelial cells convert into poorly differentiated, migratory and invasive mesenchymal cells. In the past years, a plethora of genes have been identified that are critical for EMT and metastasis formation. Notably, the EMT process not only induces increased cancer cell motility and invasiveness but also allows cancer cells to avoid apoptosis, anoikis, oncogene addiction, cellular, senescence and general immune defense. Notably, EMT seems to play a critical role in the generation and maintenance of cancer stem cells, highly consistent with the notion that metastatic cells carry the ability to initiate new tumors.
DOI:10.1016/j.semcancer.2012.02.013      PMID:22406545      URL    
[本文引用:1]
[12] YE X,WEINBERG R A.Epithelial-mesenchymal plasticity:a central regulator of cancer progression[J].Trends Cell Biology,2015,25(11):675-686.
Epithelial–mesenchymal plasticity is critical for carcinoma progression and metastasis. Inhibition of EMT activation and/or epithelial–mesenchymal plasticity may serve as new ways to clinically treat advanced carcinomas.
DOI:10.1016/j.tcb.2015.07.012      PMID:4628843      URL    
[本文引用:1]
[13] YANG P,HUO Z,LIAO H,et al.Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells[J].Curr Pharm Design,2015,21(10):1292-1300.
Malignant tumors aberrantly overexpress various embryonic genes and proto-oncogenes, including a variety of cancer-testis antigens (CTAs). CTAs belong to a class of testis-derived proteins which are only expressed in germ cells in the male testis, and the expression of CTA genes is entirely silenced in the adult somatic tissues. They are, however, aberrantly overexpressed in a variety of malignant tumor tissues. Emerging evidence shows that a number of CTAs promote epithelialmesenchymal transition (EMT) and genesis of cancer stem like cells, escalating tumorigenesis, invasion, and metastasis. The can cer-testis antigens, such as SSX, MAGE-D4B, CAGE, piwil2, and CT45A1, upregulate EMT and metastatic genes, promoting EMT and tumor dissemination. In addition, certain members of CTAs, including Piwil2, DNAJB8, CT45A1, MAGE-A, GAGE, and SPANX, are implicated in the initiation or maintenance, of cancer stem-like cells, promoting tumorigenesis and malignant progression. Clinically CTAs are closely associated with poor prognosis in cancer patients. Intriguely, CTAs are strongly immunogenic and normally restricted to the male testis after birth, however, these proteins are aberrantly overexpressed in cancer stem-like cells and in a variety of cancers, suggesting their target potential for cancer immunotherapy, as diagnostic biomarkers, and as targets for novel anticancer drug discovery. Thus, the targeting of tumorigenic CTAs is a promising strategy to eradicate cancer stem-like cells and inhibit tumorigenesis for effective cancer treatment.
DOI:10.2174/1381612821666141211154707      PMID:25506890      URL    
[本文引用:1]
[14] HILL A D,REILLY P J.Scoring functions for AutoDock[J].Meth Mol Biol,2015,1273(3):467-474.
DOI:10.1007/978-1-4939-2343-4      URL    
[本文引用:1]
[15] FORLI S,HUEY R,PIQUE M E,et al.Computational prote-inligand docking and virtual drug screening with the AutoDock suite[J].Nat Protoc,2016,11(5):905-919.
Abstract Computational docking can be used to predict bound conformations and free energies of binding for small-molecule ligands to macromolecular targets. Docking is widely used for the study of biomolecular interactions and mechanisms, and it is applied to structure-based drug design. The methods are fast enough to allow virtual screening of ligand libraries containing tens of thousands of compounds. This protocol covers the docking and virtual screening methods provided by the AutoDock suite of programs, including a basic docking of a drug molecule with an anticancer target, a virtual screen of this target with a small ligand library, docking with selective receptor flexibility, active site prediction and docking with explicit hydration. The entire protocol will require 0908045 h.
DOI:10.1038/nprot.2016.051      PMID:27077332      URL    
[本文引用:1]
[16] UTSINTONG M,ROJSANGA P,HO K Y,et al.Virtual screening against acetylcholine binding protein[J].J Biomol Screen,2012,17(2):204-215.
The nicotinic acetylcholine receptors (nAChRs) are a member of the ligand-gated ion channel family and play a key role in the transfer of information across neurological networks. The X-ray crystal structure of agonist-bound (7) acetylcholine binding protein (AChBP) has been recognized as the most appropriate template to model the ligand-binding domain of nAChR for studying the molecular mechanism of the receptor-ligand interactions. Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against AChBPs revealed 51 potential candidates. In vitro radioligand competition assays using [(3)H] epibatidine against the AChBPs from the freshwater snails, Lymnaea stagnalis, and from the marine species, Aplysia californica and the mutant (AcY55W), revealed seven compounds from the list of candidates that had micromolar to nanomolar affinities for the AChBPs. Further investigation on (7)nAChR expressing in Xenopus oocytes and on the recombinant receptors with fluorescence resonance energy transfer (FRET)-based calcium sensor expressing in HEK cells showed that seven compounds were antagonists of (7)nAChR, only one compound (NSC34352) demonstrated partial agonistic effect at low dose (10 M), and two compounds (NSC36369 and NSC34352) were selective antagonists on (7)nAchR with moderate potency. These hits serve as novel templates/scaffolds for development of more potent and specific in the AChR systems.
DOI:10.1177/1087057111421667      PMID:21956172      URL    
[本文引用:1]
[17] YAN J,ZHANG G,PAN J,et al.α-Glucosidase inhibition by luteolin:kinetics,interaction and molecular docking[J].Int J Biol Macromol,2014,64(2):213-223.
α-Glucosidase is a critical associated enzyme with type 2 diabetes mellitus in humans. Inhibition of α-glucosidase is important due to the potential effect of down regulating glucose absorption in patients. In this study, the inhibitory activity of flavone luteolin on α-glucosidase and their interaction mechanism were investigated by multispectroscopic methods along with molecular docking technique. It was found that luteolin reversibly inhibited α-glucosidase in a noncompetitive manner with an IC 50 value of (1.7202±020.05)02×0210 614 02mol02L 611 , and the inhibition followed a multi-phase kinetic process with a first-order reaction. Luteolin had a strong ability to quench the intrinsic fluorescence of α-glucosidase through a static quenching procedure. The positive values of enthalpy and entropy change suggested that the binding of luteolin to α-glucosidase was driven mainly by hydrophobic interactions, and the binding distance was estimated to be 4.5602nm. Analysis of synchronous fluorescence, circular dichroism, and Fourier transform infrared spectra demonstrated that the binding of luteolin to α-glucosidase induced rearrangement and conformational changes of the enzyme. Moreover, the results obtained from molecular docking indicated that luteolin had a high affinity close to the active site pocket of α-glucosidase and indirectly inhibited the catalytic activity of the enzyme.
DOI:10.1016/j.ijbiomac.2013.12.007      PMID:24333230      URL    
[本文引用:1]
[18] MARIE-EGYPTIENNE D T,LOHSE I,HILL R P.Cancer stem cells,the epithelial to mesenchymal transition (EMT) and radioresistance:potential role of hypoxia[J].Cancer Lett,2013,341(1):63-72.
Abstract Numerous studies have demonstrated the presence of cancer stem cells (CSCs) within solid tumors. Although the precursor of these cells is not clearly established, recent studies suggest that the phenotype of CSCs may be quite plastic and associated with the epithelial-to-mesenchymal transition (EMT). In patients, the presence of EMT and CSCs has been implicated in increased resistance to radiotherapy. Hypoxia, a negative prognostic factor for treatment success, is a potent driver of a multitude of molecular signalling pathways that allow cells to survive and thrive in the hostile tumor microenvironment and can induce EMT. Hypoxia also provides tumor cells with cues for maintenance of a stem-like state and may help to drive the linkage between EMT and CSCs. Understanding the biology of CSCs, the EMT phenotype and their implications in therapeutic relapse may provide crucial new approaches in the development of improved therapeutic strategies. Copyright 2012 Elsevier Ireland Ltd. All rights reserved.
DOI:10.1016/j.canlet.2012.11.019      PMID:23200673      URL    
[本文引用:1]
[19] MISRA A,PANDEY C,SZE S K,et al.Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT)[J].PLoS One,2012,7(11):e49766.
Abstract Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT). EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM) probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor) is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor). Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.
DOI:10.1371/journal.pone.0049766      PMID:23185433      URL    
[本文引用:1]
[20] CHEN Y,ZHANG K,LI Y,et al.Estrogen-related receptor alpha participates transforming growth factor-beta (TGF-beta) induced epithelial-mesenchymal transition of osteosarcoma cells[J].Cell Adhesion Migrat,2017,11(4):338-346.
Abstract Osteosarcoma patients often exhibit pulmonary metastasis, which results in high patient mortality. Understanding the mechanisms of advanced metastasis in osteosarcoma cell is important for the targeted treatment and drug development. Our present study revealed that transforming growth factor-β (TGF-β) treatment can significantly promote the in vitro migration and invasion of human osteosarcoma MG-63 and HOS cells. The loss of epithelial characteristics E-cadherin (E-Cad) and up regulation of mesenchymal markers Vimentin (Vim) suggested TGF-β induced epithelial-mesenchymal transition (EMT) of osteosarcoma cells. TGF-β treatment obviously increased the expression of Snail, a key EMT-related transcription factor, in both MG-63 and HOS cells. Silencing of Snail markedly attenuated TGF-β induced down regulation of E-cad and up regulation of Vim. TGF-β treatment also significantly increased the expression and nuclear translocation of estrogen-related receptors alpha (ERRα), while had no obvious effect on the expression of ERα, ERβ, or ERRγ. Knock down of ERRα or its inhibitor XCT-790 significantly attenuated TFG-β induced EMT and transcription of Snail in osteosarcoma cells. Collectively, our present study revealed that TGF-β treatment can trigger the EMT of osteosarcoma cells via ERRα/Snail pathways. Our data suggested that ERRα/Snail pathways might be potential therapeutic targets of metastasis of osteosarcoma cells.
DOI:10.1080/19336918.2016.1221567      PMID:27532429      URL    
[本文引用:0]
[21] KURIMOTO R,IWASAWA S,EBATA T,et al.Drug resis-tance originating from a TGF-beta/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation[J].Int J Oncol,2016,48(5):1825-1836.
DOI:10.3892/ijo.2016.3419      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
木犀草素
上皮-间质转化
分子对接
整合素

Luteolin
Epithelial-mesenchymal tr...
Molecular docking
Integrin

作者
阮君山
周欢
蒋宗胜
王少明

RUAN Junshan
ZHOU Huan
JIANG Zongsheng
WANG Shaoming