中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
HERALD OF MEDICINE, 2018, 37(1): 81-84
doi: 10.3870/j.issn.1004-0781.2018.01.021
拉曼光谱在药物分析中的研究进展
黄蓉, 杨永健

摘要:

该文简述了药物分析中常用的拉曼光谱技术的分类,如表面增强拉曼光谱技术;激光共振拉曼光谱技术;共焦显微拉曼激光技术;拉曼光谱成像技术;透射拉曼光谱技术;综述了该技术在药物分析中的最新研究进展,为药物分析检测的发展提供参考。

关键词: 拉曼光谱技术 ; 药物分析 ; 药物检测

Abstract:

1923年Smekal从理论上预言了物质中的分子会对入射光产生散射,1928年印度物理学家拉曼(Raman)在研究液体苯的散射光谱时,发现了拉曼散射,并获得了1930年度诺贝尔物理学奖。1934年,Placzek系统地提出了拉曼效应的基本理论并解释了拉曼光谱的发展前景。1960年激光器问世后,将拉曼光谱的激发光源由汞弧灯改为激光光源,加速了拉曼光谱的研究进程。1974年,Fleischmann等首次发现了表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)效应,使拉曼光谱在表面科学中的应用迅速崛起。进入20世纪90年代,激光共聚焦显微拉曼光谱仪研制成功并相继推出,使拉曼光谱在其他许多领域也发挥着日益重要的作用。

拉曼散射光谱作为研究物质结构、分子的振动能级以及晶体中晶格的光学声子振动能级的一个强有力的工具已有七十多年的历史。现今,拉曼光谱已被广泛应用于材料科学、生物医学、药物学、无损分析领域、农业与食品分析领域、宝石鉴定与考古领域、安全检查和刑侦领域等方面。笔者简述了药物分析中常用的几种拉曼光谱技术,综述了该技术在药物分析中的最新研究进展,为药物分析检测的发展提供参考。

1 药物分析中常用的拉曼光谱技术
1.1 傅立叶变换拉曼光谱技术

1964年,近红外(near Infrared,NIR)激发拉曼技术与傅立叶变换(Fourier transformation,FT)技术相结合的设想被Chantry等首次提出。1986年,Hirschfeld等研究并实现了近红外傅立叶变换(near infrared- Fourier transform,NIR-FT)拉曼光谱技术。1987年,第一台近红外激发傅立叶变换拉曼光谱(NIR-FT-Raman)商品仪由PerkinElmer公司推出。NIR-FT光谱技术采用傅立叶变换技术对信号进行收集,干涉仪没有任何狭缝或色散原件,因而扫描速度很快,一次即可获得全谱。通过多次累加来提高信噪比,并采用1 064 nm的近红外激发光,使得傅立叶变换技术大大减少了光谱的荧光背景 [1]。傅立叶变换拉曼光谱已被用于无机化合物分析、有机化合物和高聚物分析、生物材料分析以及傅立叶变换-表面增强拉曼光谱(FT-SERS)联用等领域。

1.2 表面增强拉曼光谱技术

1974年Fleischmann等将光滑银电极表面进行粗糙化处理后,首次获得Ag电极表面的吡啶分子的高质量的拉曼光谱。1977年,Duyne 和Creighton各自发现吸附在粗糙银电极表面的吡啶分子的拉曼信号要比溶液中单个吡啶分子的拉曼信号强大约106倍,这种与粗糙表面相关的表面增强效应,被称作表面增强拉曼散射(SERS)。表面增强拉曼解决了拉曼光谱灵敏度低的缺点,被广泛用于表面研究、结构分析、生物活体检测[2]、环境污染检测[3]、国防安全[4]、食品安全[5]等领域。

1.3 激光共振拉曼光谱技术

基于共振原理发展而来的拉曼技术称作共振拉曼光谱(resonance Raman spectroscopy,RRS)。当激光频率接近或等于分子的电子跃迁频率时,可引起强列的吸收或共振,导致分子的某些拉曼谱带强度达到正常拉曼带的104~106倍,这就是共振拉曼效应。共振拉曼光谱灵敏度比正常拉曼光谱高,适用于低浓度和微量样品检测,以及生物大分子样品检测。共振拉曼光谱目前已被用于环境污染物的监测,液态煤组分的检测,人工合成金刚石的检测以及蛋白质二级结构的鉴定等。

1.4 共焦显微拉曼激光技术

使光源、样品和探测器三点共轭聚焦,有效地排除焦平面之外其他层信号的干扰,消除来自样品的离焦区域的杂散光,使拉曼光谱信号增强104~106倍,合理地将拉曼光谱分析技术与显微分析技术结合起来的应用技术叫显微拉曼光谱技术。它具有灵敏度高、所需样品浓度低、信息量大等特点,已被用于检测电化学反应过程中溶液成分的变化,研究液/气界面水溶性卟啉的聚集,拉曼成像以及宝石鉴定。

1.5 拉曼光谱成像技术

由于激光器、单色仪以及弱光信号探测技术的不断发展,拉曼光谱除了能够根据特征拉曼频率分辨微量混合物间的各种化学成分信息,还能够分析出各成分的空间分布信息,这种快速,高精度的拉曼光谱技术就是拉曼光谱成像技术。目前其成像的空间分辨率已达到了0.5 nm,使分子内部结构和分子表面的吸附类型得以被人类所识别[6]。拉曼光谱成像技术已被用于研究固体药物中活性成分及辅料的颗粒大小、分布和形态研究,且通过化学计量学可确定药物中多组分的相对含量。

1.6 透射拉曼技术

透射拉曼技术(transmission Raman technique,TRS)是一种新型的无损检测技术,具有整体采样、快速无损等优点。在透射拉曼形式中,激光束从所探测药物的一侧入射,拉曼光从对面收集[7],透视模式贯穿整个样品取样,没有二次取样和表面偏差的问题。显微拉曼可以获得药片表面各成分的分布信息,而透射拉曼则能获得整个药片的平均信息,可以对整个药片进行准确的定性、定量分析[8-9]。透射拉曼光谱还可用于多晶型混合物的定量分析[7]。AINA等[7]研究表明透射拉曼光谱可以用于混合物大容量的准确测量,且不受系统性或随机抽样问题的干扰。透射拉曼光谱对于多晶型混合物的定量测定的准确性远远超过传统的后向散射模式。对于无模型拟合,使用TRS技术得到的R2为0.996,后向散射模式得到的R2为0.802;对于单一组分的偏最小二乘拟合,使用TRS技术得到的R2为0.985,后向散射模式得到的R2为0.804。

1.7 SERS及其联用技术

SERS技术虽然已被广泛的应用于表面科学、生物医学诊断、食品安全等众多领域,但因其自身仍然存在一些缺点和不足,为了适应更复杂的检测需要,仍需发展与其优势互补的联用技术。例如SERS和毛细管电泳联用技术,SERS和薄层色谱联用技术[10],SERS和高效液相色谱联用技术[11]等,在体内药物检测、痕量药物检测、中药分析、疾病诊断等方面已有了较广泛的应用。

1.8 小型拉曼光谱仪

近年来由于生物医学、环境监测、科技农业、以及工业流程监控等领域的现代化发展,分析仪器的小型化,轻量化被迫切需求。得益于光纤,光电成像器件以及计算机的飞速发展,小型拉曼光谱仪的出现成为了可能。美国Ocean Optics公司、Photo Research公司、牛津仪器公司以及国内各高校和研究所[12]相继研制出了小型拉曼光谱仪。小型光谱仪的成熟和应用为药品快速检测及药品生产过程控制提供了有效的工具。

1.9 空间位移拉曼光谱(spatially offset Raman spectroscopy,SORS)技术

SORS是一项新的专利拉曼技术,可以穿透覆盖层深入检测到高质量拉曼光谱信号,且无需繁琐费力的取样。它可以明确区分物料和容器的拉曼光谱,实现物料和容器的同时鉴别,从而分析不透明样品内部的化学信息,容器类型包括透明塑料袋、不透明或有颜色的HDPE(high density polyethylene,高密度聚乙烯)塑料容器、有颜色或透明的玻璃容器、麻袋、多层纸质袋等。空间位移拉曼技术能够有效地消除来自表面层的荧光,真正实现原辅料快检。SORS不但具有拉曼光谱的化学专属性,而且能提供样品深层的信息,有着巨大而广阔的应用前景。此外,SORS也有希望成为检测乳腺肿瘤的深入非侵入性医疗诊断方法。

2 拉曼光谱在药物检测领域的应用
2.1 拉曼光谱在化学研究领域的应用

无机物、有机物、聚合物的分析现已广泛使用拉曼光谱进行研究。无机化合物中金属离子与配位体之间形成的共价键显示拉曼活性,根据拉曼光谱可以确定配合物的结构,组成面稳定性等相关信息。拉曼光谱可以用来进行成分的鉴别,晶体结构的测定,晶体的结晶取向,温度和应力的测量等。拉曼位移是鉴定有机物的官能团和化学键的重要依据,因此拉曼光谱被广泛用于鉴别有机物的官能团。拉曼光谱在聚合物材料和物理学上也有广泛的应用。

庄志萍等[13]根据密度泛函理论计算了2-巯基苯并咪唑与银配合物(2-MBMZ-Ag)的拉曼光谱,根据GaussView对2-MBMZ拉曼光谱及其相应的SERS进行了归属。刘扬涛等[14]对1,3-二甲基尿嘧啶(1,3-Dimethyluracil,DMU)的拉曼光谱进行了研究,并利用量子化方法B3PW91/6-31G计算DMU分子的拉曼光谱,并以DMU和1,3-二甲基尿嘧啶的环丁烷二聚体为模型化合物,研究其拉曼光谱及振动动力学,以获得有助于对脱氧核糖核酸(DNA)和核糖核酸(RNA)碱基的紫外光损伤的拉曼光谱分析。蔡然等[15]总结了近年来拉曼光谱对液态水氢键结构的研究进展,由于改变水的温度,压强和电解质会对水团簇氢键网络结构产生影响,通过拉曼光谱可以观察到水分子间的振动频率变化,进而推断其水氢键结构的变化。吴娟霞等[16]研究了拉曼光谱技术在石墨烯结构表征中应用的一些最新进展,介绍了石墨烯的典型拉曼特征,讨论了其特征峰在石墨烯的层数指认和石墨烯边缘与缺陷态分析中的应用,以及石墨烯的层间堆垛方式等对其电子能带结构的影响。

2.2 拉曼光谱在药物领域的应用

由于拉曼光谱对于药物分子骨架结构、空间排列等变化极其敏感,因此在药物固态特征分析方面应用广泛,可以用于药物的成盐形式、水合物、晶型、光学异构体等方面的研究。拉曼光谱相比红外光谱而言谱峰清晰尖锐,具有无损测量,无需对样品前处理,水的信号很弱等优点,在药物定性定量检测以及假药辨别等方面应用广泛。拉曼光谱分析速度快,且对药物具有指纹性,可以应用于分子结构研究,因此也可以用于药用辅料的质量控制及现场快检。美国食品药品管理局(Food and Drug Administration,FDA)也已将拉曼光谱检测原辅料的方法写入《美国药典》。

乐健等[17]采用激光共焦拉曼光谱仪对3种规格的氨茶碱注射液中无水茶碱和乙二胺进行了测定,建立了运用拉曼光谱技术快速测定氨茶碱注射液中无水茶碱和乙二胺的方法。陈莉等[18]建立了拉曼光谱法测定注射用头孢他啶溶液含量的方法。VEIJ等[19]利用拉曼光谱对43种常用药用辅料进行测定,将其按结构分为8类,并对这8类辅料进行了结构分析,并推断根据辅料的不同可以区别原研药与仿制药。曹玲等[20]利用拉曼光谱对羧酸类及其衍生物药用辅料进行研究,并和相应的红外光谱进行比较,建立了羧酸类及其衍生物药用辅料的拉曼光谱定性鉴别方法。钱小峰等[21]收集了络活喜片剂常用辅料的拉曼光谱,建立辅料库,计算待检样品和原研药的辅料相似度,并结合特征峰,建立了基于拉曼光谱的鉴别苯磺酸氨氯地平仿冒药的方法。BOIRET 等[22]阐述了通过拉曼图像的初始数据,运用独立成分分析技术(independent component analysis,ICA)提取纯净信号,从而诊察药片的活性成分和主要辅料的分布。

2.3 拉曼光谱在中药领域的应用

中药复方是中医中药的特色和精髓,面对复杂的混合体系,拉曼光谱具有指纹性,对测试样品状态无要求,无损害,简单快捷,对中药进行的全组分测定获取全貌整体信息,不破坏配伍性等优点,在中药检测领域应用广泛。利用拉曼基团频率振动峰峰形与强度差异,可以测定出各种药材的标准谱并进行分类,编制图谱库,建立检测系统,对药材品种进行鉴定,辨识药材的真伪。拉曼光谱不仅可以分类,还可以鉴别产地,对药材进行定性定量分析,对药材的稳定性进行研究,以及对重要产品进行质量控制。

冯尚源等[23]测试研究了党参中药材不同部位的拉曼光谱,通过测试党参煎剂、银胶以及党参煎剂与银胶混合体的吸收光谱,对党参煎剂的SERS信号进行了初步谱峰归属。黄浩等[24]利用基于银纳米粒子的SERS技术对黄芪饮片样本进行检测,获取并分析了黄芪饮片样本的常规拉曼光谱和SERS,对所获得的黄芪饮片SERS信号进行了初步谱峰归属。万秋娥等[25]利用激光拉曼光谱对人参及其伪品进行了很好的区分,再结合二阶导数拉曼光谱,对人参及其拟伪品峨参、北沙参、桔梗进行了进一步说明。卫程华等[26]利用拉曼光谱对三七药材粉末、三七水提和醇提样品进行了解析,建立了快速分析三七有效成分的表面拉曼光谱法。

2.4 拉曼光谱在生物领域的应用

蛋白质分子三维空间折叠和卷曲构成的特有的空间构象和核酸的有序结构是它们各自发挥功能的结构基础。拉曼光谱测定核酸的有序结构及主链构象,侧链残基构型,从来获得蛋白质或多肽的一级结构。水的拉曼光谱较弱,通过研究溶液中生物大分子的构象、分子骨架的构象以及碱基对的信息,可以研究氨基酸、蛋白质的二级结构,核苷酸以及它们与药物的相互作用。吴元菲等[27]利用电化学伏安法和SERS技术研究了胞嘧啶在粗糙银电极和金电极表面上的吸附行为。崔丽等[28]利用表面增强光谱对4种DNA碱基与高氯酸根在金纳米粒子表面的共吸附行为进行了研究,探讨了吸附能力、电位、其他共存离子对共吸附的影响。KRISHNA等[29]阐述了如何采用显微拉曼光谱与FT-红外拉曼结合技术在混合型细胞中随机鉴别出一种细胞类型。由于MCF7和HL60间的光谱差异比MCF7和Mes-sa细胞间的差别显著,说明细胞不同区域其拉曼信号存在不同,而对样品光谱物质主要成分的分析检验,对混合型细胞中的单细胞类型的分析结果给出了合理的解释。NAKASHIMA等[30]通过红外和共振拉曼光谱对细胞色素C氧化酶(cytochrome C oxidase,CCO)的质子泵和氧化还原机制进行了阐述。ORELIO等[31]运用拉曼光谱对洋葱伯克菌(B.cepacia)和铜绿假单胞菌菌株进行了表型分析,40种菌株的拉曼光谱显示出较高的相似性,表明拉曼光谱不能用于区分这两类菌种。

3 展望

拉曼光谱除了在药物分析方面的应用,在环境,食品,宝石鉴定及文物考古方面也有广泛的应用。随着激光技术的不断发展,拉曼光谱将被应用到更多的学科。随着拉曼光谱技术的不断改进和完善,会有越来越多的新技术应用到拉曼技术,拉曼光谱在药物分析领域的前景也会更加光明和广阔。

The authors have declared that no competing interests exist.

参考文献

[1] FERRARO J R,NAKAMOTO K,BROWN C W.Introduc-tory Raman spectroscopy[M].2nd ed.New York:Elsevier/Academic Press,2003 :83-94.
[本文引用:1]
[2] 孙美娟,陶站华.表面增强拉曼光谱技术在生物学中的应用[J].广西师范学院学报(自然科学版),2014,31(4):27-31.
[本文引用:1]
[3] 刘文婧,杜晶晶,景传勇.表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J].环境化学,2014,33(2):217-228.
[本文引用:1]
[4] 张倩慈,刘权卫,李定明,.拉曼光谱在核领域研究中的应用[J].化学分析计量,2011,20(1):92-95.
[本文引用:1]
[5] 陈蓓蓓,陆洋,马宁,.表面增强拉曼光谱技术在食品安全快递检测中的应用[J].贵州科学,2012,30(6):24-29.
表面增强拉曼光谱技术具有前处理简单、操作简便、检测时间短、灵敏度高等优点,在食品质量安全检测方面具有良好的应用前景。论文简述了表面增强拉曼光谱技术在食品非法添加物、滥用食品添加剂、农药兽药残留等方面现场快速检测中的最新研究进展,对今后的研究进行了展望。
[本文引用:1]
[6] ZHANG R,ZHANG Y,DONG Z C,et al. Chemical map-ping of a single molecule by plasmon-enhanced Raman scattering[J].Nature,2013(498):82-86.
Abstract Visualizing individual molecules with chemical recognition is a longstanding target in catalysis, molecular nanotechnology and biotechnology. Molecular vibrations provide a valuable 'fingerprint' for such identification. Vibrational spectroscopy based on tip-enhanced Raman scattering allows us to access the spectral signals of molecular species very efficiently via the strong localized plasmonic fields produced at the tip apex. However, the best spatial resolution of the tip-enhanced Raman scattering imaging is still limited to 3-15 nanometres, which is not adequate for resolving a single molecule chemically. Here we demonstrate Raman spectral imaging with spatial resolution below one nanometre, resolving the inner structure and surface configuration of a single molecule. This is achieved by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons. This matching is made possible by the extremely precise tuning capability provided by scanning tunnelling microscopy. Experimental evidence suggests that the highly confined and broadband nature of the nanocavity plasmon field in the tunnelling gap is essential for ultrahigh-resolution imaging through the generation of an efficient double-resonance enhancement for both Raman excitation and Raman emission. Our technique not only allows for chemical imaging at the single-molecule level, but also offers a new way to study the optical processes and photochemistry of a single molecule.
DOI:10.1038/nature12151      PMID:23739426      URL    
[本文引用:1]
[7] AINA A,HARGREAVES M D,MATOUSEK P,et al.Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations[J].Analyst,2010,135(9):2328-2333.
We present the first quantitative study of polymorphic content in a model pharmaceutical formulation using transmission Raman spectroscopy (TRS), and compare the results obtained with those from traditional backscattering geometry. The transmission method is shown to provide a true bulk measurement of the composition, being unaffected by systematic or stochastic sub-sampling issues that can plague traditional backscattering geometries. The accuracy of the quantification of the polymorphs using TRS was shown to surpass considerably that achieved using conventional backscattering mode. For a model-free fit, the TRS method yielded R(2) of 0.996 compared to the backscattering value of 0.802; for a partial least squares fit with a single component the TRS method accounted for 98.09% of the variance in the data and yielded an R(2) of 0.985, compared to 89.65% of the variance and R(2) of 0.804 for the backscattering method.
DOI:10.1039/c0an00352b      PMID:20614090      URL    
[本文引用:3]
[8] ZHANG Y,MCGEORGE G.Quantitative analysis of phar-maceutical bilayer tablets using transmission Raman spectroscopy[J].J Pharm Inn,2015,10(2):269-280.
Introduction Transmission Raman Spectroscopy (TRS) has become an increasingly applied technology in the analysis of pharmaceutical tablets for quality control purposes and developing formulation and process understanding. One area that has received only cursory attention to date is that of bilayered tablets that represents an unusually challenging situation. This study aims to provide an understanding of the relationship of the active pharmaceutical ingredient (API) content and the transmission Raman spectral response in bilayered pharmaceutical tablets to facilitate development of quantitative models for the prediction of API content in multilayer tablets. Methods and Results The Raman intensity was considered as a function of the Raman photon generation and decay in a layer of interest (the API layer) and Raman photon decay from a second layer (the non-API layer). To separate and understand the various contributions, a variety of tablet configurations were studied and it was found that (1) with increasing the thickness of the non-API layer, the API Raman signal displayed an exponential decay as a function of the non-API layer thickness as well as the total tablet thickness; (2) when only changing API concentration, the Raman signal linearly responds to the API content; and (3) when increasing the weight/thickness of the API layer and keeping the non-API layer constant, the Raman signal reaches a maximum at a particular thickness and then decays as tablets become thicker. The complex spectral response was effectively modeled according to a modified Schrader, Kubelka-Munk model where both the Raman photon generation factor and photon losses were accounted for. Coupling the results of these studies together yields a comprehensive approach for modeling multi-component bilayer tablets. The addition of a beam enhancer on the bottom surface allowed for a selective over-enhancement of the bottom layer, which helps in the analysis of thin layers or coatings.
DOI:10.1007/s12247-015-9223-8      URL    
[本文引用:1]
[9] GRIFFENA J A,OWEN A W,BURLEY J,et al.Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy[J].J Pharm Biom Ana,2016,128(1):35-45.
This proof of concept study demonstrates the application of transmission Raman spectroscopy (TRS) to the non-invasive and non-destructive quantification of low levels (0.62–1.32% w/w) of an active pharmaceutical ingredient’s polymorphic forms in a pharmaceutical formulation. Partial least squares calibration models were validated with independent validation samples resulting in prediction RMSEP values of 0.03–0.05% w/w and a limit of detection of 0.1–0.2% w/w. The study further demonstrates the ability of TRS to quantify all tablet constituents in one single measurement. By analysis of degraded stability samples, sole transformation between polymorphic forms was observed while excipient levels remained constant. Additionally, a beam enhancer device was used to enhance laser coupling to the sample, which allowed comparable prediction performance at 60 times faster rates (0.202s) than in standard mode.
DOI:10.1016/j.jpba.2016.05.017      PMID:27218440      URL    
[本文引用:1]
[10] ZHANG Z M,LIU J F,LIU R,et al.Thin layer chromato-graphy coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions[J].Anal Chem,2014,86(15):7286-7292.
By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.
DOI:10.1021/ac5017387      PMID:24978841      URL    
[本文引用:1]
[11] WANG W,XU M M,GUO Q H,et al.Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy[J].RSC Adv,2015,5(59):47640-47646.
Rapid separation and detection of analytes have been the focus of a growing body of investigation for potential applications including food safety and environment science. However, the development of a robust analytical technique for simultaneous rapid separation and on-line detection remains a formidable challenge. Herein, we report a rational design based on the combination of high performance liquid chromatography (HPLC) and surface-enhanced Raman spectroscopy (SERS) for the rapid separation and on-line detection of multi-analytes. In particular, a plasmonic nanoparticle-modified capillary (NPMC) is fabricated through a self-assembly process and connected to a HPLC effluent-end port. After separation by HPLC, the analytes are adsorbed onto plasmonic nanoparticles in the capillary and then detected by SERS. The resulting HPLC-SERS coupled detection system can simultaneously achieve rapid separation and provide on-line molecular structural information of multi-analytes. In addition, we also demonstrate the on-line detection of a pesticide molecule (thiram) in an orange using this combined system. Importantly, the detection limit can be down to 10 7mol L 1. These findings indicate that our coupled HPLC-SERS system offers a promising analytical technique in modern analytical science and technology.
DOI:10.1039/c5ra05562h      URL    
[本文引用:1]
[12] 孙振华,余镇岗,黄梅珍,.小型化拉曼光谱仪的优化设计及应用[J].光电子·激光,2015,26(6):1132-1137.
[本文引用:1]
[13] 庄志萍,杨丽敏,陈玉峰,.2-巯基苯并咪唑表面增强拉曼光谱的密度泛函理论研究[J].光谱学与光谱分析,2014,34(10):293-294.
根据密度泛函理论(DFT)理论使用B3LYP方法,C,H,N原子 采用6-31++G(d,p)基组,Ag原子采用Lanl2dz基组,计算了2-巯基苯并咪唑与银配合物(2-MBMZ-Ag)的Raman光谱,并且对 2-MBMZ分子Raman光谱和SERS谱进行了详细的归属,计算结果说明产生SERS是由于巯基的s原子和咪唑环的N原子同时与Ag表面相互作用,键 连Ag原子越多,与实验值会更接近。
URL    
[本文引用:1]
[14] 刘扬涛,吕选忠,于宙,.1,3-二甲基尿嘧啶的拉曼光谱及其量子化学从头算(DFT)研究[J].光谱学与光谱分析,2004,24(12):1579-1583.
[本文引用:1]
[15] 蔡然,杨宏伟,和劲松,.液态水氢键结构的拉曼光谱研究进展[J].化工环保,2010,30(6):492-495.
总结了近年来将拉曼光谱应用于液态水氢键结构的研究进展,分析了温度、压强和电解质对于水团簇氢键网络结构的影响。改变水的温度和压强或加入不同电解质,将会对水的氢键作用产生影响,并改变水分子团簇结构。通过拉曼光谱可以观察到水分子问振动频率的变化,从而推断液态水氢键结构的变化。
[本文引用:1]
[16] 吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3):301-318.
<p>石墨烯是sp<sup>2</sup>碳原子紧密堆积形成的二维原子晶体结构,因其独特的结构与性质引起了科学家们的广泛关注. 拉曼光谱是一种快速而又简洁的表征物质结构的方法. 主要综述了拉曼光谱技术在石墨烯结构表征中应用的一些最新进展. 首先,在系统分析石墨烯声子色散曲线的基础上介绍了石墨烯的典型拉曼特征(G&rsquo;峰、G峰和D峰),讨论了G&rsquo;峰、G峰和D峰在石墨烯层数的指认和石墨烯边缘与缺陷态分析中的应用;然后,通过对石墨烯拉曼G峰和G&rsquo;峰的峰位、峰型以及强度的分析,讨论了石墨烯的层间堆垛方式、掺杂、基底、温度和应力等对石墨烯的电子能带结构的影响;最后,介绍了石墨烯中的二阶和频与倍频拉曼特征以及石墨烯的低频拉曼特征(剪切和层间呼吸振动模),并讨论了其对石墨烯结构的依赖性.</p>
DOI:10.6023/A13090936      Magsci    
[本文引用:1]
[17] 乐健,李珺婵,陈桂良,.拉曼光谱法快速测定氨茶碱注射液中无水茶碱和乙二胺的含量[J].中国临床药学杂志,2014,23(3):141-145.
目的:建立一种运用拉曼光谱技术快速测定氨茶碱注射液中无水茶碱和乙 二胺的方法。方法:采用拉曼光谱对3种规格的氨茶碱注射液直接测定,分别以CLS、PLS和PCR定量模型对数据分析,并将无水茶碱和乙二胺的定量结果与 法定方法的结果比较。结果:CLS定量模型的测定结果与法定方法基本一致。结论:本方法操作简便、快速无损,可成为注射剂快速检测的分析方法。
URL    
[本文引用:1]
[18] 陈莉,钱啸,朱乃军.拉曼光谱法快速测定注射用头孢他定溶液的含量[J].中国药事,2015,25(8):874-878.
目的:建立拉曼光谱法测定注射用头孢他啶溶液含量的方法。方法:采用主成分回归法(PCR)及偏最小二乘 法(PLS)结合光谱预处理方法建立定量分析模型。结果:PCR法和PLS法结合一阶导数光谱建立的定量模型较为理想,相关系数(Corr. Coeff.)分别为0.9994和0.9995,交叉验证均方差(RMSECV)分别为2.33和2.13。结论:拉曼光谱结合多元回归分析(PCR和 PLS)可用于注射用头孢他啶溶液的含量测定。
DOI:10.16153/j.1002-7777.2015.08.019      URL    
[本文引用:1]
[19] VEIJ M D,VANDENABEELE P,BEER T D.Reference database of Raman spectra of pharmaceutical excipients[J].Raman Spectroscopy,2009,40(2):297-307.
Abstract Raman spectroscopy has evolved into an important fast, direct and nondestructive technique in pharmaceutical analysis. Usually, the focus in this field is mainly on the active ingredients and not on the excipients present in the drugs. A collection of Raman spectra of widely used pharmaceutical excipients is presented in this article, which can serve as a reference for the interpretation of Raman spectra during drug analysis (including classical qualitative and quantitative pharmaceutical analysis, counterfeit tracing and process analytical technology (PAT) applications). The 43 analyzed excipients can be classified into seven categories: mono- and disaccharides (dextrose, lactitol, maltitol, lactose and sucrose), polysaccharides (microcrystalline cellulose, methylcellulose (MC), carboxymethylcellulose (CMC), hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), wheat starch, maltodextrin, primojel, tragacanth and pectin), polyalcohols (propylene glycol, erythritol, xylitol, mannitol and sorbitol), carboxylic acids and salts (alginic acid, glycine, magnesium stearate, sodium acetate and sodium benzoate), esters (arachis oil, lubritab, dibutyl sebacate, triacetin, Eudragit E100 and Eudragit RL100), inorganic compounds (calcium phosphate, talc, anatase and rutile (TiO 2 ), calcium carbonate, magnesium carbonate, sodium bicarbonate and calcium sulfate) and some unclassified products [gelatin, macrogol 4000 (polyethylene glycol (PEG), polyvinyl pyrrolidone and sodium lauryl sulfate]. Copyright 2008 John Wiley & Sons, Ltd.
DOI:10.1002/jrs.2125      URL    
[本文引用:1]
[20] 曹玲,石蓓佳,吴莉,.常用羧酸类及其衍生物药用辅料的拉曼光谱鉴别[J].药物分析杂志,2010,30(3):484-490.
目的:建立羧酸类及其衍生物药用辅料的拉曼光谱定性鉴别方法。方法:收集常用羧酸类及其衍生物药用辅料的拉曼光谱,对拉曼光谱峰进行指认,分析比较了结构和光谱差异之间的关系。结果:拉曼光谱可以给出关于化合物结构的指纹信息,并可和红外光谱相互补充佐证。结论:建立的方法快速、简便、专属性强,可用于羧酸类及其衍生物药用辅料的鉴别。
URL    
[本文引用:1]
[21] 钱小峰,柳艳,陈辉,.基于药用辅料的拉曼光谱鉴别络活喜仿冒药的研究[J].药学实践杂志,2015,33(4):334-337.
[本文引用:1]
[22] BOIRET M,RUTLEDGE D N,GORRETTA N,et al.Appli-cation of independent component analysis on Raman images of a pharmaceutical drug product:pure spectra determination and spatial distribution of constituents[J].J Pharm Biomed Anal,2014,94(1):58-64.
Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k -NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max鈥搈in normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening.
DOI:10.1016/j.jpba.2014.01.027      PMID:24549008      URL    
[本文引用:1]
[23] 冯尚源,陈荣,李永增,.党参煎剂表面增强拉曼光谱[J].中国激光,2010,37(1):121-124.
测试研究了党参中药材不同部位的拉曼光谱、党参煎剂的拉曼光谱以及党参煎剂的表面增强拉曼光谱(SERS)。党参煎剂在银胶中的SERS信号明显增强。测试了党参煎剂、银胶以及党参煎剂与银胶混合体的吸收光谱,探讨了党参煎剂在银胶上的吸附特性及表面增强机理,并对所获得的党参煎剂的SERS信号进行初步谱峰归属。研究表明,SERS可能为党参煎剂或其他中成药生产、质量监控提供一种直接、快速、准确的检测新方法。
URL    
[本文引用:1]
[24] 黄浩,陈荣,陈伟炜,.黄芪表面增强拉曼光谱研究[J].北京中医药大学学报,2012,35(12):843-846.
目的 研究黄芪饮片的表面增强拉曼光谱.方法 采用盐酸羟胺还原硝酸银制备银胶,以银纳米粒子为增强基底检测黄芪饮片样本表面增强拉曼光谱(SERS).检测获取并对比分析黄芪饮片样本的常规拉曼光谱 和SERS,探讨黄芪饮片样本与银胶混合后的表面增强效应,并对所获得的黄芪饮片SERS信号进行初步谱峰归属.结果 在常规拉曼检测中,由于较强的荧光背景干扰,只能分辨出少量的拉曼特征峰,而SERS技术能有效淬灭荧光,同时显著增强黄芪饮片样本的拉曼信号.黄芪饮片 SERS光谱中在537、621、733、958、1 032、1 117、1 245、1 326、1 402、1 467 cm-1处都可观察到明显的拉曼特征峰,其中733 cm-和1 326 cm-1为强SERS信号.通过谱峰指认可将获得的SERS峰位分别归属于葡萄糖、乙酰胺等生化物质及其分子结构.结论 SERS技术可为黄芪或其他中药饮片生化检测分析、质量监控、鉴别提供一种新颖、快速、有效的检测新方法.
URL    
[本文引用:1]
[25] 万秋娥,刘汉平,张鹤鸣,.激光拉曼光谱法无损鉴别人参及其伪品[J].光谱学与光谱分析,2012,32(4):989-992.
利用激光拉曼光谱技术并结合二阶导数拉曼光谱, 对人参及其拟伪品峨参、 北沙参、 桔梗进行了鉴别。 人参及其伪品均在拉曼光谱中出现了1 460, 1 130, 1 086, 942, 483 cm-1等拉曼振动峰, 根据这些拉曼位移可以判断出在人参及其伪品中都含有糖类物质。 北沙参的拉曼谱图中出现了不同于其他三种药材的2 206 cm-1的拉曼特征峰。 峨参中出现了1 050和1 869 cm-1相对应的链状酯类化合物的拉曼振动峰。 桔梗中出现了1 227, 600, 691 cm-1等明显不同于其他三种药材的拉曼振动峰。 利用这些拉曼振动峰的差异可将人参及其伪品进行很好的区分。 再利用二阶导数拉曼光谱图对人参及其伪品的鉴别结果进行进一步的补充说明。 此鉴别方法与常规的光谱法相比具有更直接、 快速, 并且具有不破坏样品的原性质的特点。
URL    
[本文引用:1]
[26] 卫程华,陈娟,许曼翎,.表面增强拉曼光谱法快速分析中药三七的有效成分[J].江苏大学学报,2015,25(3):263-267.
[本文引用:1]
[27] 吴元菲,李剑锋,吴德印,.胞嘧啶吸附于粗糙银和金电极上的表面增强拉曼光谱[J].光散射学报,2006,18(4):297-301.
利用电化学伏安方法和表面增强拉曼光谱(SERS)技术研究了在-1.0 V ~ 0 V的电位区间内胞嘧啶在粗糙银电极和金电极表面上的吸附行为.结果表明,在所研究的电位区间,胞嘧啶通过N3位垂直吸附在粗糙银和金电极表面,且当电位负移时吸附作用减弱.
URL    
[本文引用:1]
[28] 崔丽,任斌,田中群.DNA碱基与高氯酸根共吸附行为的表面增强拉曼光谱研究[J].物理化学学报,2010,26(2):397-402.
<p>共吸附有助于实现弱吸附分子或离子的高灵敏表面增强拉曼光谱(SERS)检测. 本文研究了四种脱氧核糖核酸(DNA)碱基, 即腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶与高氯酸根(ClO-4)在金纳米粒子表面的共吸附行为, 并考察了吸附能力、电位、共存阴离子等因素的影响. 研究发现四种碱基在质子化后都可以与ClO-4发生共吸附, 但在金表面吸附能力弱的胸腺嘧啶与ClO-4共吸附所获得的ClO-4信号最弱. 另外, 负电位下电极的排斥作用, 以及较正电位下基底SERS增强效应减小等因素都会导致ClO-4信号衰减. 此外, Cl-、NO-3、SO2-4等阴离子可以与ClO-4发生可逆动态竞争共吸附, 同时引起ClO-4信号减弱. 以上结果将为提高共吸附法检测弱吸附离子的灵敏度提供重要参考.</p>
DOI:10.3866/PKU.WHXB20100136      Magsci    
[本文引用:1]
[29] KRISHNA C M,SOCKALINGUM G D,KEGELAER G,et al.Micro-Raman spectroscopy of mixed cancer cell populations[J].Vibrat Spectros,2005,38(1):95-100.
Micro-Raman spectroscopy was used to investigate randomly mixed cell populations of human promyelocytic leukemia (HL60) and human breast cancer (MCF7); human uterine sarcoma (Mes-sa) and MCF7; as well as their respective pure cell lines. In this study the efficiency of micro-Raman spectroscopy to identify a cell type in randomly distributed mixed cell population was assessed. Raman data show that the differences in spectral profile between MCF7 and HL60 cell lines were more marked than those between MCF7 and Mes-sa cells. This shows that cells from different origins can display variances in their spectral signatures. Spectra were also analyzed by principal components analysis and results obtained from pure cell populations gave a reasonably good delineation between the cell types. Analysis of both mixed cell populations along with their pure cells counterparts, resulted in each case in three different clusters corresponding to the two pure cell populations and the mixed populations. However, a few spectra from the mixed population remained misclassified and were found to be closer to the clusters corresponding to pure cells. These results indicate that micro-Raman spectroscopy can be used to identify a cell type in a mixed cell population via its spectral signature.
DOI:10.1016/j.vibspec.2005.02.018      URL    
[本文引用:1]
[30] NAKASHIMA S,OGURA T,KITAGAWA T.Infrared and Raman spectroscopic investigation of the reaction mechanism of cytochromecoxidase[J].Biochim Biophys Acta,2015,1847(1):86-97.
Recent progress in studies on the proton-pumping and O60reduction mechanisms of cytochrome c oxidase (CcO) elucidated by infrared (IR) and resonance Raman (rR) spectroscopy, is reviewed. CcO is the terminal enzyme of the respiratory chain and its O60reduction reaction is coupled with H62 pumping activity across the inner mitochondrial membrane. The former is catalyzed by heme a3 and its mechanism has been determined using a rR technique, while the latter used the protein moiety and has been investigated with an IR technique. The number of H62 relative to e63 transferred in the reaction is 1:1, and their coupling is presumably performed by heme a and nearby residues. To perform this function, different parts of the protein need to cooperate with each other spontaneously and sequentially. It is the purpose of this article to describe the structural details on the coupling on the basis of the vibrational spectra of certain specified residues and chromophores involved in the reaction. Recent developments in time-resolved IR and Raman technology concomitant with protein manipulation methods have yielded profound insights into such structural changes. In particular, the new IR techniques that yielded the breakthrough are reviewed and assessed in detail. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
DOI:10.1016/j.bbabio.2014.08.002      PMID:25135480      URL    
[本文引用:1]
[31] ORELIOA C C,BEIBOERA S H,MORSINKA M C,et al.Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification[J].J Microb Methods,2014,107(1):126-132.
Both AFLP and rep-PCR method data correspond with the previously reported species identification. However, Raman spectroscopy does not discriminate among P. aeruginosa and Bcc species and is therefore not useful as a diagnostic tool.
DOI:10.1016/j.mimet.2014.10.002      PMID:25311414      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
拉曼光谱技术
药物分析
药物检测


作者
黄蓉
杨永健