中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
HERALD OF MEDICINE, 2018, 37(5): 518-522
doi: 10.3870/j.issn.1004-0781.2018.05.003
小檗碱对糖尿病大鼠心血管的保护作用*
Protective Effects of Berberine on the Cardiovascular in Diabetic Rats
芦琨1, 赫金凤2, 常景芝1, 胡灵卫1, 田华1

摘要: 目的 观察小檗碱对糖尿病大鼠血糖、血脂以及心血管病变相关因子的影响,探讨其可能的作用机制。方法 采用腹腔注射链脲佐菌素(STZ)复制糖尿病大鼠模型,将造模成功的43只大鼠随机分为模型对照组(n=9)、二甲双胍组(140 mg·kg-1·d-1,n=8)和小檗碱小、中、大剂量组(50,100,150 mg·kg-1·d-1,n=9,9,8)。另取正常大鼠8只,作为正常对照组。灌胃给药12周后,取大鼠心脏,计算心脏质量指数;试剂盒测定血清中三酰甘油(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)和一氧化氮(NO)含量;放射分析法测定大鼠血清中血栓素B2(TXB2)、6-酮-前列腺素Fα(6-keto-PGFα)和内皮素(ET)的含量;实时荧光定量-聚合酶链反应(RT-PCR)检测大鼠胸主动脉组织细胞间黏附分子-1(ICAM-1)和血管内皮细胞黏附分子-1(VCAM-1)的表达。结果 与模型对照组比较,小檗碱中、大剂量组和二甲双胍组血糖水平、心脏质量指数、TG、TC、LDL-C的含量明显降低(P<0.01);血清中NO、6-keto-PGFα含量明显升高(P<0.01),ET和TXB2含量明显下降(P<0.01);胸主动脉组织ICAM-1和VCAM-1 mRNA的表达均明显降低(P<0.01)。结论 小檗碱可通过调节血脂修复糖尿病大鼠血管收缩与舒张的动态平衡,拮抗动脉粥样硬化,从而对心血管起到一定程度的保护作用。
关键词: 小檗碱 ; 糖尿病 ; 心血管疾病 ; 血管内皮

Abstract:
Objective To investigate the possible mechanism of berberine on the cardiovascular in diabetic rats by observing the effect of berberine on the blood glucose, blood lipid and factors involved in cardiovascular injury. Methods The diabetic model was induced by intraperitoneal injection of streptozotocin(STZ). The 43 rats of the model were randomly divided into model control group (n=9), metformin group (n=8) and berberine low, medium, high dose groups (50,100,150 mg·kg-1·d-1,n=9,9,8). Normal rats (n=8) were set as normal control group. After 12 weeks of gavage administration, rats’ heart was taken and heart mass index(HMI) was calculated;concentration of TG, TC, HDL-C, LDL-C, NO was examined by kit;rats’ serum concentration of blood TXB2, 6-keto-PGFα and ET was determined by radioimmunoassay;the expression of ICAM-1and VCAM-1 in thoracic aorta tissue was tested by real-time quantitative PCR (RT-PCR). Results Compared with the model control group, levels of BG, HMI, TG, TC, LDL-C were significantly decreased(P<0.01)in berberine medium, high dose groups and metformin group;the serum concentration of NO and 6-keto-PGFα was increased(P<0.01) while ET and TXB2 was decreased(P<0.01);the expression of ICAM-1and VCAM-1 in thoracic aorta tissue was decreased obviously(P<0.01). Conclusion Berberine has protective effects on the cardiovascular in diabetic rats by means of regulating blood lipid, recovering blood vessel’s dynamic balance of systolic and diastolic, playing a role in anti- atherosclerosis.
Key words: Berberine ; Diabetic ; Cardiovascular disease ; Blood vessel endothelium

糖尿病心血管病变是糖尿病最常见并发症,是引起糖尿病患者死亡的主要原因之一[1]。研究认为,内皮素(endothelin,ET)、血栓素、微量白蛋白尿以及血脂的增高等加速了糖尿病各种血管病变的发生和发展,降低这些因素是治疗的关键[2,3]。动脉粥样硬化(atherosclerosis,AS)是糖尿病最常见的心血管病变。研究表明,AS的发生发展与细胞间黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)和血管内皮细胞黏附分子-1(vascular cell adhesion molecule,VCAM-1)的过度表达有关[4]。小檗碱是黄连等中药的有效成分,是一种异喹啉生物碱,具有降糖、调脂、抗氧化、降压等广泛的药理作用[5],还有研究证明它对心肌缺血-再灌注损伤等有保护作用[6],但是关于小檗碱对糖尿病大鼠心血管病变的改善作用笔者尚未见报道。本研究拟通过建立糖尿病大鼠模型,观察小檗碱对心血管病变发生的相关因子ET、 一氧化碳(NO)、血栓素B2(thromboxane B2,TXB2)、ICAM-1、 VCAM-1等的影响,探讨小檗碱对糖尿病大鼠心血管病变的保护作用及可能机制。

1 材料与方法
1.1 实验动物

清洁级健康SD雄性大鼠60只,鼠龄3个月,体质量160~200 g,动物生产许可证号:SCXK(晋)2015-0001,由山西医科大学实验动物中心提供;大鼠分笼饲养,自由摄食和饮水,饲养环境温度22~24 ℃,相对湿度为40%~60%。

1.2 药品与试剂

小檗碱(批号:110713)、二甲双胍(批号:200602)均购自哈尔滨三精制药厂;链脲佐菌素(streptozotocin,STZ)购自Sigma公司,批号:101025;三酰甘油(TG,批号:006304)、总胆固醇(TC,批号:006301)、高密度脂蛋白胆固醇(HDL-C,批号:006302)、低密度脂蛋白胆固醇(LDL-C,批号:006303)和NO试剂盒(批号:20100902)均购自中生北控生物科技股份有限公司;TXB2放免试剂盒,批号:20110105;6-酮-前列腺素Fα(6-keto-PGFα)放免试剂盒,批号:20110106;ET放免试剂盒,批号:20101105,均购于武汉博士德生物技术有限公司;总RNA提取试剂Trizol reagent(美国Invitrogen 公司,批号:15596026),逆转录试剂盒(批号:Lot#K10329)、实时荧光定量-聚合酶链反应(RT-PCR)试剂盒(批号:L/N7E020G6)、DNA marker(DL2000bp,批号:Lot#103)均由南京诺唯赞生物科技有限公司提供。

1.3 仪器

80-2离心机(上海手术器械厂);METILER AE240型电子分析天平(感量:0.1 mg,梅特勒-托利公司);基因扩增仪(英国Techne公司,型号:TC-512);凝胶成像分析系统(美国 GE Healthcare 公司,型号:ImageQuant LAS 4000)。

1.4 动物分组、模型制备与给药方法

1.4.1 制作DM大鼠模型并分组 将60只健康SD大鼠,取8只作为正常对照组大鼠,另52只作为模型对照组大鼠。模型制作参照文献[7,8]方法,STZ临用前用pH值4.5的0.1 mol·L-1枸橼酸缓冲液溶解,按照60 mg·kg-1的剂量一次性腹腔注射;正常对照组大鼠用等体积的枸橼酸缓冲液腹腔注射。分别在STZ注射后的72,96 和120 h尾静脉采血检测空腹血糖(BG),3次BG均≥16.7 mmol·L-1即糖尿病造模成功。最后,43只大鼠造模成功,将其按照随机数字表分为5组:模型对照组9只、小檗碱小剂量(50 mg·kg-1·d-1)组9只、小檗碱中剂量(100 mg·kg-1·d-1)组9只、小檗碱大剂量(150 mg·kg-1·d-1)组8只、二甲双胍(140 mg·kg-1·d-1)组8只。

1.4.2 给药方法 参考文献[9]的方法,药物均用0.5%羧甲基纤维素钠混悬,每日上午1次,按照相应剂量灌胃给药,模型对照组和正常对照组则给予等体积0.5%羧甲基纤维素钠溶液灌胃,连续给药12周。每周测一次体质量,根据体质量调整用药剂量。实验期间大鼠自由饮水,标准饮食,不使用任何降糖药物。

1.5 观察指标的检测方法

1.5.1 血清和胸主动脉组织等的收集 12周末,用血糖仪测定BG。大鼠称体质量后,按300 mg·kg-1腹腔注射水合氯醛(100 g·L-1)进行麻醉,心脏取血,于室温静置1 h,离心,取血清,-20 ℃冰箱保存。 取血后,迅速取出心脏,冰0.9%氯化钠溶液冲洗,多余水分用滤纸吸干,称定心脏质量,以全心质量与体质量的比值(H/B,mg·g-1)计算心脏质量指数(heart mass index,HMI)。迅速打开胸腔,切取部分胸主动脉,置于液氮中保存,用于RT-PCR检测。

1.5.2 生化指标的测定 用试剂盒测定血清中TG、TC、HDL-C、LDL-C、NO的含量。

1.5.3 血清中TXB2、6-keto-PGFα和ET含量的测定 用放射分析法(按试剂盒说明进行操作)测定大鼠血清中TXB2、6-keto-PGFα和ET的含量。

1.5.4 RT-PCR检测大鼠胸主动脉组织ICAM-1和VCAM-1的表达 取出胸主动脉组织,以1:9的质量体积比加入预冷的0.9%氯化钠溶液充分研磨,制备成胸主动脉组织匀浆。按照Trizol试剂说明书方法提取胸主动脉组织总RNA,逆转录为cDNA后,以β-actin为内参进行RT-PCR检测。所用于扩增的 序列见表1。ICAM-1反应条件为:94 ℃预变性,94 ℃变性,55 ℃退火,72 ℃延伸,共35个循环;VCAM-1反应条件为:94 ℃预变性,94 ℃变性,60 ℃退火,72 ℃延伸,共35个循环。循环完毕再72 ℃延伸10 min。参照基因的ΔCT法计算ICAM-1和VCAM-1的相对表达量。

表1 RT-PCR扩增的引物序列
Tab.1 Primer sequences for RT-PCR
基因 引物序列 扩增长度/bp
ICAM-1 5'-CTTTAGCAGCTCAACAATGG-3'
5'-CATTTTCTCCCAGGCATTC-3' 102
VCAM-1 5'-GTGTGCCCGAAATATGGATA-3'
5'-TCGTATACTCCGGCATCCT-3' 121
β-actin 5'-AGGGAAATCGTGCGTGACAT-3'
5'-GAACCGCTCATTGCCGATAG-3' 150

表1 RT-PCR扩增的引物序列

Tab.1 Primer sequences for RT-PCR

1.6 统计学方法

采用SPSS17.0版软件统计分析数据,计量资料均用均数±标准差( x ¯ ±s)表示,各组间比较采用单因素方差分析,以P<0.05为差异有统计学意义。

2 结果
2.1 各组大鼠BG及HMI的比较

表2显示,与正常对照组比较,模型对照组大鼠BG水平和HMI明显升高(P<0.01);与模型对照组比较,小檗碱中、大剂量组和二甲双胍组BG水平和HMI明显下降(P<0.01)。

表2 6组大鼠血糖及心脏质量指数水平的比较
Tab.2 Comparison of blood glucose, heart mass index among six groups of rats x¯±s
组别 大鼠/
剂量/
(mg·kg-1·d-1)
BG/
(mmol·L-1)
HMI/
(mg·g-1)
正常对照组 8 6.35±0.42 3.70±0.31
模型对照组 9 23.16±4.47*1 4.15±0.27*1
二甲双胍组 8 140 19.18±4.17*2 3.59±0.17*2
小檗碱
小剂量组 9 50 21.54±5.16 4.07±0.28
中剂量组 9 100 19.78±3.42*2 3.76±0.19*2
大剂量组 8 150 18.97±3.55*2 3.69±0.16*2
F 19.247 45.021
P P<0.01 P<0.01

Compared with normal control group,*1P<0.01;Compared with model control group,*2P<0.01

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.01

表2 6组大鼠血糖及心脏质量指数水平的比较

Tab.2 Comparison of blood glucose, heart mass index among six groups of rats x¯±s

2.2 各组大鼠血脂的测定结果

与正常对照组比较,模型对照组大鼠血清中的TG、TC、LDL-C含量均增加(均P<0.01);与模型对照组比较,小檗碱中、大剂量组和二甲双胍组血清中的TG、TC、LDL-C含量均减少(均P<0.01)。说明小檗碱对糖尿病大鼠的血脂有明显的调节作用,结果见表3。

表3 6组大鼠血脂水平的比较
Tab.3 Comparison of blood lipids among six groups of rats mmol·L-1,x¯±s
组别 大鼠/
剂量/
(mg·kg-1·d-1)
TG TC HDL-C LDL-C
正常对照组 8 2.77±1.03 3.49±0.87 2.18±0.09 0.89±0.26
模型对照组 9 4.39±3.56*1 5.41±1.23*1 2.54±0.57 1.45±0.36*1
二甲双胍组 8 140 2.58±1.07*2 4.01±1.13*2 2.27±0.29 0.88±0.32*2
小檗碱
小剂量组 9 50 3.61±1.08 4.56±1.17 2.48±1.12 1.22±0.12
中剂量组 9 100 2.89±1.22*2 4.08±1.03*2 2.39±0.25 0.98±0.31*2
大剂量组 8 150 2.78±1.19*2 3.98±0.85*2 2.36±0.11 0.91±0.29*2
F 23.417 210.585 37.120 165.008
P P<0.01 P<0.01 P<0.01 P<0.01

Compared with normal control group,*1P<0.01;Compared with model control group,*2P<0.01

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.01

表3 6组大鼠血脂水平的比较

Tab.3 Comparison of blood lipids among six groups of rats mmol·L-1,x¯±s

2.3 各组大鼠NO和ET水平

表4显示,与正常对照组比较,模型对照组大鼠血清中的NO水平显著降低,血清中ET水平显著升高(P<0.01);与模型对照组比较,小檗碱中、大剂量组和二甲双胍组NO水平升高,血清ET水平降低(P<0.01)。

表4 6组大鼠血清中NO和ET水平的比较
Tab.4 Comparison of the serum levels of NO and ET among six groups of rats x¯±s
组别 大鼠/
剂量/
(mg·kg-1·d-1)
NO/
(μmol·L-1)
ET/
(pg·mL-1)
正常对照组 8 68.53±9.74 97.38±9.56
模型对照组 9 52.18±7.69*1 112.87±16.47*1
二甲双胍组 8 140 62.38±7.88*2 97.96±8.31*2
小檗碱
小剂量组 9 50 55.49±6.43 106.76±10.68
中剂量组 9 100 59.41±7.45*2 101.77±10.16*2
大剂量组 8 150 61.91±6.75*2 98.72±9.66*2
F 279.569 84.641
P P<0.01 P<0.01

Compared with normal control group,*1P<0.01;Compared with model control group,*2P<0.01

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.01

表4 6组大鼠血清中NO和ET水平的比较

Tab.4 Comparison of the serum levels of NO and ET among six groups of rats x¯±s

2.4 各组大鼠血清中TXB2、6-keto-PGFα的水平

与正常对照组比较,模型对照组大鼠血清中的TXB2水平显著升高,血清中6-keto-PGFα水平显著下降(P<0.01);与模型对照组比较,小檗碱中、大剂量组和二甲双胍组血清TXB2水平降低,血清6-keto-PGFα水平升高(P<0.01),结果见表5。

表5 6组大鼠血清中TXB2和6-keto-PGFα水平
Tab.5 Comparison of the serum levels of TXB2 and 6-keto-PGFα among six groups of rats ng·L-1,x¯±s
组别 大鼠/
剂量/
(mg·kg-1·d-1)
TXB2 6-keto-
PGFα
正常对照组 8 73.28±10.39 114.73±15.79
模型对照组 9 98.46±13.73*1 89.48±13.51*1
二甲双胍组 8 140 80.21±10.19*2 106.77±9.93*2
小檗碱
小剂量组 9 50 93.68±12.27 98.42±12.81
中剂量组 9 100 81.54±12.36*2 105.83±11.56*2
大剂量组 8 150 78.87±10.93*2 104.58±11.93*2
F 546.030 41.548
P P<0.01 P<0.01

Compared with normal control group,*1P<0.01;Compared with model control group,*2P<0.01

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.01

表5 6组大鼠血清中TXB2和6-keto-PGFα水平

Tab.5 Comparison of the serum levels of TXB2 and 6-keto-PGFα among six groups of rats ng·L-1,x¯±s

2.5 胸主动脉组织的RT-PCR检测结果

与正常对照组比较,模型对照组大鼠胸主动脉组织ICAM-1和VCAM-1 mRNA的表达均明显升高(P<0.01);与模型对照组比较,小檗碱中、大剂量组和二甲双胍组胸主动脉组织ICAM-1和VCAM-1 mRNA的表达均明显降低(P<0.01),说明小檗碱有抑制ICAM-1和VCAM-1 mRNA表达的作用,见图1。

图1 RT-PCR检测ICAM-1 mRNA和VCAM-1 mRNA的相对表达水平

Fig.1 Relative mRNA expression of ICAM-1 and VCAM-1 detected by real-time quantitative PCR Compared with normal control group,*1P<0.01;Compared with model control group,*2P<0.01

3 讨论

本研究结果显示,中、大剂量小檗碱可降低糖尿病大鼠的血糖、HMI,并可降低血清中TG、TC、LDL-C的含量,提示小檗碱对于糖尿病的心脏损伤具有一定程度的拮抗作用,而且小檗碱可抑制LDL-C的生成,对血脂异常具有调节作用。

2型糖尿病心血管病变的病理基础主要是内皮细胞损伤[10],内皮受损后会刺激ET的分泌,进而促进平滑肌细胞增殖分裂,收缩血管。正常情况下,ET和NO(扩血管物质)处于动态平衡,ET的增多必然会导致NO的释放减少,二者的比例失衡会加重血管内皮的损伤,导致血流动力学紊乱[11,12]。本实验中,小檗碱可使ET的含量减少,NO的含量增加,提示小檗碱可能通过维持体内ET与NO的平衡来恢复血管的舒张与收缩,从而起到保护血管的作用,这与WANG等[13]的研究结果基本一致。前列环素和血栓素A2在正常情况下通过保持动态平衡来维持血小板的功能,当内皮细胞损伤,血栓素A2增加,前列环素和血栓素A2的平衡被破坏,引起血小板黏附聚集,形成血栓[14]。由于前列环素和血栓素A2的半衰期很短,所以实验中用前列环素的代谢产物6-keto-PGFα和血栓素A2的代谢产物TXB2作为判断指标。本研究显示,小檗碱可降低TXB2的含量,提高6-keto-PGFα的水平,调节前列环素和血栓素A2的平衡,维持血小板的正常功能。研究显示[15],人的动脉粥样硬化损伤部位有多种黏附因子,如ICAM-1、VCAM-1、E选择蛋白、P选择蛋白等。在积聚于血管内皮下的氧化型低密度脂蛋白作用下,内皮细胞表达ICAM-1、VCAM-1、MCP-1等黏附分子和趋化因子,促使血流中的单核细胞及T淋巴细胞黏附于受损内皮表面并进入内皮下,单核细胞分化为巨噬细胞吞噬脂质,形成泡沫细胞,促进了AS的发生发展[16]。本研究显示,糖尿病大鼠胸主动脉组织ICAM-1和VCAM-1高度表达,而小檗碱对于ICAM-1和VCAM-1的表达有明显的抑制作用,提示小檗碱具有防治AS的作用。

综上所述,小檗碱可缓解糖尿病大鼠心脏损伤,对心脏有一定的保护作用,其机制可能与调节血脂、修复损伤的内皮细胞以及下调黏附因子ICAM-1和VCAM-1的表达有关。

The authors have declared that no competing interests exist.

参考文献

[1] 洪霓,赵倩,刘腾,.GLP-1受体激动剂Exenatide改善糖尿病大鼠心血管功能[J].基础医学与临床,2013,33(9):1171-1175.
目的 探讨胰高血糖素样肽1(GLP-1) 受体激动剂Exenatide(Ex)治疗对糖尿病大鼠心血管功能的影响,为其临床应用提供实验依据。方法 用单因素四水平不等重复的完全随机实验进行研究,34只Wistar 大鼠随机分成4 组:对照组(C, n=7), 糖尿病组( DM, n=9),小剂量Ex治疗组(Emin, n=9),大剂量Ex治疗组(Emax,n=9)。检测大鼠空腹血糖水平;使用小动物超声仪观察大鼠左心室射血分数(EF)、左心室短轴缩短率(FS);观察腹主动脉血流速(AF),胸主动脉内膜扫描电镜观察血管内膜损伤。结果 DM组空腹血糖明显升高(P<0.01),Exenatide治疗组空腹血糖较DM组显著降低(P<0.05)。DM组EF、FS较对照明显降低(P<0.01),Exenatide治疗组EF、FS明显升高(P<0.05)。DM组腹主动脉血流速明显降低(P<0.01),血管内膜出现明显损伤; Exenatide治疗组腹主动脉血流速较DM组明显升高(分别P<0.05, P<0.01),血管内膜损伤减轻。结论 Exenatide能够降低糖尿病大鼠血糖水平, 并改善糖尿病心脏和血管功能。
Magsci     URL    
[本文引用:1]
[2] STHEHOUWER C D A,LAMBERT J,DONKER A T M,et al.Endothelial dysfunction and pathogenesis of diabetic patients [J].Cardiovasc Res,1997,34(1):55.
To review, from the clinical perspective, the contribution of dysfunction of the vascular endothelium to the pathogenesis of diabetic micro- and macroangiopathy.Available data indicate that endothelial dysfunction in diabetes complicated by micro- or macroalbuminuria (renal microangiopathy) is generalised. The close linkage between microalbuminuria and endothelial dysfunction is an attractive explanation for the fact that microalbuminuria is a risk marker for atherosclerotic cardiovascular disease in diabetes. Endothelial dysfunction precedes the occurrence of even early diabetic microangiopathy. However, it is not clear whether endothelial dysfunction is a feature of the diabetic state per se or whether additional factors are required to induce endothelial dysfunction given the presence of diabetes. Convincing data from animal and in vitro models exist to indicate that endothelial dysfunction in diabetes may be related to hyperglycaemic pseudohypoxia, activation of protein kinase C, increased expression of transforming growth factor-beta and vascular endothelial growth factor, non-enzymatic glycation, oxidative stress, activation of the coagulation cascade, increased expression of tumour necrosis factor-alpha, and high levels of insulin and insulin precursor molecules. However, the importance of these proposed mechanisms have not yet been extensively assessed in diabetes in man.Endothelial dysfunction plays a key role in the pathogenesis of diabetic angiopathy in man. The biochemical basis of endothelial dysfunction in diabetic man, however, has yet to be fully elucidated.
DOI:10.1016/S0008-6363(96)00272-6      PMID:9217873      URL    
[本文引用:1]
[3] PUTHANVEETIL P,WAN A,RODRIGUES B.Lipoprotein lipase and angiopoietin-like 4-Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease[J].Crit Rev Clin Lab Sci,2015,52(3):138-149.
Abstract Abstract Cardiac diseases have been extensively studied following diabetes and altered metabolism has been implicated in its initiation. In this context, there is a shift from glucose utilization to predominantly fatty acid metabolism. We have focused on the micro- and macro-environments that the heart uses to provide fatty acids to the cardiomyocyte. Specifically, we will discuss the cross talk between endothelial cells, smooth muscles and cardiomyocytes, and their respective secretory products that allows for this shift in metabolism. These changes will then be linked to alterations in the cardiovascular system and the augmented heart disease observed during diabetes. Traditionally, the heart was only thought of as an organ that supplies oxygen and nutrients to the body through its function as a pump. However, the heart as an endocrine organ has also been suggested. Secreted products from the cardiomyocytes include the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Both have been shown to have vasodilatory, diuretic and antihypertensive effects. These peptides have been extensively studied and their deficiency is considered to be a major cause for the initiation of cardiovascular and cardiometabolic disorders. Another secretory enzyme, lipoprotein lipase (LPL), has been implicated in diabetic heart disease. LPL is a triglyceride-hydrolyzing enzyme that is synthesized within the cardiomyocyte and secreted towards the lumen under various conditions. For example, moderate or short-term hyperglycemia stimulates the release of LPL from the cardiomyocytes towards the endothelial cells. This process allows LPL to contact lipoprotein triglycerides, initiating their break down, with the product of lipolysis (free fatty acids, FA) translocating towards the cardiomyocytes for energy consumption. This mechanism compensates for the lack of glucose availability following diabetes. Under prolonged, chronic conditions of hyperglycemia, there is a need to inhibit this mechanism to avoid the excess delivery of FA to the cardiomyocytes, an effect that is known to induce cardiac cell death. Thus, LPL inhibition is made possible by a FA-induced activation of PPAR 尾/未, which augments angiopoietin-like 4 (Angptl4), an inhibitor of LPL activity. In the current review, we will focus on the mediators and conditions that regulate LPL and Angptl4 secretion from the cardiomyocyte, which are critical for maintaining cardiac metabolic homeostasis.
DOI:10.3109/10408363.2014.997931      PMID:25597500      URL    
[本文引用:1]
[4] DWORACKA M,KRAYZAGORSKA E,WESOLOWSKA A,et al.Circulating monocyte chemotactic protein 1 (MCP-1),vascular cell adhesion molecule 1 (VCAM-1) and angiogenin in type 2 diabetic patients treated with statins in low doses [J].Eur J Pharmacol,2014,740:474-479.
Statins are known as agents promoting a biphasic dose-dependent effect on angiogenesis under experimental conditions. Dysregulation of angiogenesis plays an important role in the development of atherosclerosis and it may be affected by metabolic factors. The aim of this research was to explain how low doses of statins modify serum concentrations of pro-angiogenic factors MCP-1 and angiogenin in type 2 diabetic patients. Measurements of metabolic control parameters were performed in 30 patients with type 2 diabetes treated with low doses of statin, and in 34 statin-free patients with type 2 diabetes. The serum levels of MCP-1 and VCAM-1 in statin-treated patients were lower than those of the statin-free group. ANCOVA results revealed that these effects were dependent only on the use of statins. In type 2 diabetic subjects, overall positive correlation was found between total cholesterol or LDL serum concentration and MCP-1 serum level. The angiogenin concentration in the serum did not show differences and was comparable in both groups. The angiogenin serum level correlated negatively with HDL, LDL and with HbA 1 c. Multivariate regression analysis indicated that angiogenin serum levels in type 2 diabetic patients were determined mainly by HbA 1 c, HDL-cholesterol and diabetes duration. It has been shown that statins used in low doses in type 2 diabetic subjects decrease MCP-1 and VCAM-1serum levels, most likely due to the statins-related effect on the lipid profile, while angiogenin serum levels in this group are determined rather by the current metabolic control.
DOI:10.1016/j.ejphar.2014.06.041      PMID:24991787      URL    
[本文引用:1]
[5] 李顺宝,李田昌.小檗碱对糖尿病早期心肌病大鼠保护及其机制研究[J].中国医药导刊,2011,13(2):301-302.
目的:探讨小檗碱对早期糖尿病心肌病的作用及机制.方法:雄性SD大鼠随机分为E组(对照组,n=8)、A组(糖尿病组)、C组(小檗碱组,n=8)、B组(福辛普利组n=8)、D组(联合用药组n=8),后四组一次腹腔注射链脲佐菌素STZ(45mg/kg)建立糖尿病模型,造模后4周,C组大鼠灌胃小檗碱150mg/(kg·d),B组大鼠灌胃福辛普利10mg/(kg·d),D组大鼠灌胃小檗碱150mg/(kg·d)+福辛普利10mg/(kg·d),连续给药4周,第8周末测定大鼠空腹血糖、血脂、体重及心脏指数,左心室插管测定左心室最大收缩/舒张速率,放射免疫法测定血浆及心肌血管紧张素Ⅱ(AngⅡ),Western法测定心肌AT1R及AT2R.结果:糖尿病心肌病模型组大鼠空腹血糖、TC、TG、LDL、心脏指数、血浆及心肌AngⅡ、心肌AT1R及AT2R均高于E组大鼠,HDL均低于E组大鼠 与E组相比,心功能出现舒张功能损伤 C组大鼠空腹血糖、TC、TG、LDL、心脏指数、血浆及心肌AngⅡ、心肌AT1R及AT2R显著降低(P〈0.01),HDL升高 心脏舒张功能得到改善.结论:小檗碱可以改善糖尿病心肌病大鼠糖、脂代谢紊乱,对其起到一定保护作用.
[本文引用:1]
[6] 熊茂来,魏蕾.小檗碱对大鼠心肌缺血再灌注损伤的保护作用[J].湖北民族学院学报(医学版),2009,26(1):8-10.
目的观察小檗碱对大鼠心肌缺血再灌注损伤的保护作用,并探讨其作用机制。方法结扎大鼠冠状动脉左前降支30m in,再灌90m in后复制出大鼠心肌缺血再灌注损伤模型,观察小檗碱对大鼠心肌梗死范围及心肌酶学的影响,采用原位标记法检测各组凋亡细胞及指数。结果小檗碱能减少心肌梗死范围,减少心肌细胞磷酸肌酸激酶(CPK)和乳酸脱氢酶(LDH)的释放。与假手术组比较,模型组和小檗碱预处理组凋亡指数均显著增高,但小檗碱预处理组凋亡指数明显低于模型组。结论小檗碱对大鼠心肌缺血再灌注损伤有明显保护作用,其机制可能与抑制心肌细胞凋亡有关。
[本文引用:1]
[7] 张翥,黄松敏,冯敏,.糖尿病肾病早期白蛋白尿与Megalin的表达变化[J].中国中西医结合肾病杂志,2006,7(4):197-200.
目的:通过链脲佐菌素(STZ)诱导糖尿病肾病大鼠Megalin的表达变化,了解糖尿病肾 病时肾小管重吸收白蛋白的能力与Megalin的关系。方法:将SD大鼠分为正常对照组(N组)和糖尿病肾病组(DN组)。DN组以55mg/kg体重的 剂量一次性腹腔注射1%STZ,N组一次性腹腔注射柠檬酸缓冲液。在实验的2、4、6周分别处死两组的5只大鼠。并测量大鼠的血糖、24h尿量、24h尿 白蛋白量、24h尿肌酐浓度、血清肌酐和尿素氮、体重和肾脏重量,计算肌酐清除率和肾脏肥大指数,应用免疫组化和RT—PCR技术观察各组大鼠2、4、6 周的肾小管Megalin表达。结果:第2周DN组的Megalin表达水平与N组相比有显著下降(P〈0.05),与第6周比较DN组Megalin表 达逐渐降低,且有统计学差异(P〈0.05)。结论:SIZ腹腔注射所致大鼠糖尿病肾病的24h白蛋白尿增加与肾小管近端的Me—gain表达呈显著负相 关关系。Megalin表达的降低不是一过性,也不能自行恢复,不加干预会随着病程延长而逐渐加重。
[本文引用:1]
[8] 田华,母传贤,尤丽菊,.姜黄素对糖尿病肾病大鼠肾脏的保护作用及其机制[J].吉林大学学报(医学版),2013,39(4):747-751.
<p>目的: 探讨姜黄素对糖尿病肾病(DN)大鼠肾脏结缔组织生长因子( CTGF ) 表达和肾脏排泄功能的影响,阐明姜黄素对DN大鼠肾脏的保护作用及其机制。方法:40只雄性SD大鼠分为正常对照组(n=12)和模型组(n=28),采用腹腔注射链脲佐菌素(STZ)的方法建立DN大鼠模型,24只造模成功的大鼠随机分为模型组(n=12)和姜黄素组(n=12)。于用药8周末检测大鼠血糖水平、体质量、肾质量、肾质量/体质量、24 h尿微量蛋白清除率(UAER)和血尿素氮(BUN)、血肌酐(Scr)水平;HE染色观察大鼠肾组织病理学变化;免疫组织化学法检测肾皮质CTGF蛋白表达强度。结果: 与模型组比较,姜黄素组大鼠一般情况明显改善,空腹血糖降低(P&lt;0.01),体质量明显增加(P&lt;0.01);与模型组比较,姜黄素组大鼠肾质量、肾质量/体质量、UAER、BUN和Scr明显降低(P&lt;0.01);与模型组比较,姜黄素组大鼠肾组织着色程度明显减轻,CTGF表达显著下降(P&lt;0.01);与模型组比较,姜黄素组大鼠肾小球肥大、系膜细胞增生、肾小球变形病变明显减轻。结论:姜黄素能明显改善大鼠肾脏功能,其机制可能与抑制肾脏CTGF表达有关。&nbsp;</p>
DOI:10.7694/jldxyxb20130421      Magsci    
[本文引用:1]
[9] 董世芬,洪缨,汪瑞祺,.小檗碱对实验性2型糖尿病心肌病大鼠模型心脏保护作用研究[J].中国药理学通报,2013,29(9):1216-1221.
[本文引用:1]
[10] 高家荣,庄星星,魏良兵,.丹蛭降糖胶囊治疗 2 型糖尿病血管病变的作用机制研究[J].中药药理与临床,2014,30(6):143-145.
目的:观察丹蛭降糖胶囊对2型糖尿病血管病变大鼠治疗作用,探索其可能的作用机制。方法:运用高脂饲料喂养结合小剂量链脲佐菌素复制2型糖尿病血管病变大鼠模型。灌胃给药2周后和4周后处死部分大鼠,腹主动脉取血,测血浆糖化血红蛋白、胰岛素、NO、ET-1、PAI、t-PA、PGI2和TXA2的含量,动态观察丹蛭降糖胶囊对2型糖尿病血管病变大鼠的治疗作用。结果:和正常大鼠相比,2型糖尿病血管病变大鼠血浆胰岛素水平降低,糖化血红蛋白升高;模型组大鼠血浆PAI、ET-1和TXA2含量升高,血浆t-PA、NO和PGI2含量则显著降低。给药4周后,丹蛭降糖胶囊1.26(g/kg)组和丹蛭降糖胶囊0.63(g/kg)组可以降低显著血浆PAI、ET-1和TXA2水平,升高血浆t-PA、NO和PGI2。丹蛭降糖胶囊1.26(g/kg)组、0.63(g/kg)组和0.32(g/kg)组均可以降低血糖,丹蛭降糖胶囊1.26(g/kg)组和丹蛭降糖胶囊0.63(g/kg)组可降低糖化血红蛋白水平,丹蛭降糖胶囊1.26(g/kg)组可升高血浆胰岛素水平。结论 :丹蛭降糖胶囊对2型糖尿病血管病变大鼠有防治作用,其机制可能与修复胰岛细胞和血管内皮细胞有关。
URL    
[本文引用:1]
[11] EL-SAYED S S,ZAKARIA M N,ABDEL-GHANY R H,et al.Cystathionine-γ lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats[J].Eur J Pharmacol,2016,783:73-84.
Blunted cystathionine lyase (CSE) activity (reduced endogenous H 2 S-level) is implicated in hypertension and myocardial dysfunction in diabetes. Here, we tested the hypothesis that CSE derived H 2 S mediates the cardiovascular protection conferred by the imidazoline I 1 receptor agonist moxonidine in a diabetic rat model. We utilized streptozotocin (STZ; 55/mg/kg i.p) to induce diabetes in male Wistar rats. Four weeks later, STZ-treated rats received vehicle, moxonidine (2 or 6/mg/kg; gavage), CSE inhibitor DL-propargylglycine, (37.5/mg/kg i.p) or DL-propargylglycine with moxonidine (6/mg/kg) for 3 weeks. Moxonidine improved the glycemic state, and reversed myocardial hypertrophy, hypertension and baroreflex dysfunction in STZ-treated rats. Ex vivo studies revealed that STZ caused reductions in CSE expression/activity, H 2 S and nitric oxide (NO) levels and serum adiponectin and elevations in myocardial imidazoline I 1 receptor expression, p38 and extracellular signal-regulated kinase, ERK1/2, phosphorylation and lipid peroxidation (expressed as malondialdehyde). Moxonidine reversed these biochemical responses, and suppressed the expression of death associated protein kinase-3. Finally, pharmacologic CSE inhibition (DL-propargylglycine) abrogated the favorable cardiovascular, glycemic and biochemical responses elicited by moxonidine. These findings present the first evidence for a mechanistic role for CSE derived H 2 S in the glycemic control and in the favorable cardiovascular effects conferred by imidazoline I 1 receptor activation (moxonidine) in a diabetic rat model.
DOI:10.1016/j.ejphar.2016.04.054      PMID:27138707      URL    
[本文引用:1]
[12] FARAH K,ADILA P,SAVITA S,et al.Improvement in myocardial function by terminalia arjuna in streptozotocin-induced diabetic rats:possible mechanisms[J].J Cardio Pharm Therap,2013,18(5):481-489.
DOI:10.1177/1074248413488831      URL    
[本文引用:1]
[13] WANG C,LI J,LV X,et al.Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin[J].Eur J Pharmacol,2009,12(620):131-137.
Abstract Berberine can improve insulin resistance, lower blood glucose, and regulate lipid metabolism disorders which cause endothelial dysfunction, leading to vascular complications of type 2 diabetes mellitus. The aim of the present study was to investigate the effects of berberine on endothelial dysfunction of aortas in type 2 diabetes mellitus rats and its mechanism. Wistar rats were randomly divided into four groups: diabetic rats, control rats, diabetic rats treated with berberine (100 mg/kg), and control rats treated with berberine. The serum fasting blood glucose, insulin, total cholesterol, triglyceride and nitric oxide (NO) levels were tested. Acetylcholine-induced endothelium-dependent relaxation and sodium nitroprusside induced endothelium-independent relaxation were measured in aortas for estimating endothelial function. The expression of endothelial nitric oxide synthase (eNOS) mRNA was measured by RT-PCR, and the protein expressions of eNOS and NADPH oxidase (NOX4) were analyzed by western blot. The results showed that berberine significantly decreased fasting blood glucose, and triglyceride levels in diabetic rats. Berberine also improved endothelium-dependent vasorelaxation impaired in aorta. The expressions of eNOS mRNA and protein were significantly increased, while NOX4 protein expression was decreased in aortas from diabetic rats with berberine treatment. Moreover, serum NO levels were elevated after berberine treatment. In conclusion, berberine restores diabetic endothelial dysfunction through enhanced NO bioavailability by up-regulating eNOS expression and down-regulating expression of NADPH oxidase.
DOI:10.1016/j.ejphar.2009.07.027      PMID:19686728      URL    
[本文引用:1]
[14] 吴佳蕾,许惠琴,沈存思,.山茱萸配伍组分对糖尿病大鼠心血管病变的保护作用[J].中国药理学通报,2013,29(3):382-386.
目的通过观察糖尿病大鼠血脂、血管损伤相关因子及病理变化,分析山茱萸配伍组分保护糖尿病心血管病变的作用机制。方法链脲佐菌素(STZ)复合高脂饲料造成糖尿病大鼠模型,取造模成功大鼠按血糖值随机分组,设立模型组、格列美脲(GLMN)组(0.4 mg.kg-1)、山茱萸配伍组分低剂量(PC-L)组(60 mg.kg-1)、高剂量(PC-H)组(120mg.kg-1),灌胃给药12周,另设空白对照组,模型组与空白组大鼠以蒸馏水灌胃。试剂盒测定血清中TC、TG、HDL-C、LDL-C、NO、T-NOS;放射免疫测定血清中TXB2和6-keto-PGF1α及血浆中ET含量。取大鼠心脏并计算脏器系数,同时观察大鼠心脏和胸主动脉病理组织学变化。结果 PC-L、PC-H组大鼠血清中TC、TG、LDL-C、TXB2含量减少,LDL-C/HDL-C、TXB2/6-keto-PGF1α值降低,与模型组比较差异有显著性(P〈0.05,P〈0.01)。PC-L组NO、T-NOS含量有增加的趋势,而ET含量减少、NO/ET值升高,与模型组比较差异有显著性(P〈0.05);PC-H组NO、T-NOS含量增加、ET含量减少、NO/ET值升高,但与模型组比较差异无显著性。结论山茱萸配伍组分可调节血脂,恢复血管收缩与舒张的动态平衡,改善血液流变性和减轻心脏及胸主动脉病变,具有保护糖尿病大鼠心血管病变的作用。
[本文引用:1]
[15] VAN DER VALK F M,VAN WIJK D F,STRORES E S.Novel anti-inflammatory strategies in atherosclerosis[ J ].Curr Opin Lipidol,2012,23(6):532-539.
Inflammation has been widely acknowledged to contribute throughout all stages of atherogenesis. However, these recent advances in our understanding have not been translated into clinical practice in which the mainstay of treatment is still lipid-targeted therapy. This review provides an overview of promising anti-inflammatory therapies in atherosclerosis, and discusses potential drawbacks and clinical benefits.Immunosuppressive drugs are likely to beneficially affect atherogenesis. Several novel anti-inflammatory targets have been scrutinized, of which some have reached clinical development stage, such as cytokine targets interleukin-1 and interleukin-6, CCR2 antagonist, selective phospholipase, and leukotriene inhibitors. Novel imaging modalities such as MRI and PET-computed tomography provide valuable surrogate inflammatory endpoints for risk stratification and testing anti-inflammatory agents in cardiovascular randomized trials.Anti-inflammatory therapies hold great promise in cardiovascular prevention regimens; however, atherosclerosis is a chronic disease, and systemic long-term use of anti-inflammatory agents carries the risk of complications arising from immunosuppression. In order to successfully add immunosuppressive drugs to our routine armament, we need to identify high-risk patients who benefit from anti-inflammatory treatment, increase our insight into the inflammatory pathogenesis of atherogenesis, and find safe and effective compounds capable of directly suppressing plaque inflammation.
DOI:10.1097/MOL.0b013e3283587543      PMID:23160400      URL    
[本文引用:1]
[16] JIANG Y,JIANGLL,MAIMAITIREXIATI X M,et al.Irbesartan attenuates TNF-α-induced ICAM-1,VCAM-1,and E-selectin expression through suppression of NF-κB pathway in HUVECs[J].Eur Rev Med Pharmacol Sci,2015,19(17):3295-3302.
It is widely recognized that atherosclerosis is a chronic inflammatory disease. Intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and E-selectin play vital roles in inflammatory processes. ICAM-1, VCAM-1, and E-selectin expression is regulated by nuclear factor (NF)-κB signaling. It has been reported that irbesartan can decrease expression of atrial fibrillation-Induced atrial adhesion molecule and reduce secretion of inflammation associated cytokines from cultured human carotid atheroma. In this study, we examined whether irbesartan prevents TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured. The expression of ICAM-1, VCAM-1 and MCP-1 was measured by real-time quantitative PCR and ELISA. The expression of NF-κB and p-IκB-α was measured by Western blot. It indicated that in HUVECs irbesartan inhibited expression and secretion of TNFα-induced ICAM-1, VCAM-1, and E-selectin. Furthermore, irbesartan inhibited TNF-α-induced IκB-α phosphorylation and NF-κB P65 nuclear translocation substantially. In conclusion, irbesartan attenuates TNFα-induced ICAM-1, VCAM-1, and E-selectin expression by way of suppressing the NF-κB pathways in HUVECs. Irbesartan might postpone the progression of inflammatory diseases, including atherosclerosis. Irbesartan attenuates TNFα-induced ICAM-1, VCAM-1 and MCP-1 expression through the suppression of NF-κB pathways. These results suggest irbesartan would be of great benefit to delaying the progression of inflammatory diseases, including atherosclerosis.
PMID:26400537      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
小檗碱
糖尿病
心血管疾病
血管内皮

Berberine
Diabetic
Cardiovascular disease
Blood vessel endothelium

作者
芦琨
赫金凤
常景芝
胡灵卫
田华

LU Kun
HE Jinfeng
CHANG Jingzhi
HU Lingwei
TIAN Hua