中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
HERALD OF MEDICINE, 2018, 37(6): 727-731
doi: 10.3870/j.issn.1004-0781.2018.06.018
丁苯酞-磺丁基醚-β-环糊精包合物制备工艺优化
Technology Optimization of Preparation Process of Butylphthalide Sulfobutyl Ether-β-cyclodextrin Inclusion Complex
修宪1,, 田伟2, 王雪姣1,, 冯彩霞3, 相会欣4, 孟阳1

摘要:

目的 优化丁苯酞-磺丁基醚-β-环糊精包合物的制备工艺。方法 采用冷冻干燥法制备丁苯酞-磺丁基醚-β-环糊精包合物,将丁苯酞包合率作为指标,采用星点设计法,设定三因素五水平考察包合温度、包合时间、磺丁基醚-β-环糊精与丁苯酞投料比对包合工艺的影响,并分别进行多元线性、二项式方程和三项式方程拟合,建立模型,效应面法选取最优工艺。结果 丁苯酞-磺丁基醚-β-环糊精包合工艺为:包合温度67 ℃、时间2.09 h、磺丁基醚-β-环糊精与丁苯酞投料比2.6:1,丁苯酞的包合率预测值与实际值的偏差为2.4%。结论 以星点设计-效应面法建立的数学模型预测效果良好,该方法适用于丁苯酞-磺丁基醚-β-环糊精包合物的制备工艺优化。

关键词: 丁苯酞 ; 磺丁基醚--环糊精; ; 包合物 ; 工艺优化 ; 星点设计-效应面法

Abstract:

Objective To optimize preparation process of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex. Methods Freeze-drying method was adopted to prepare butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex. Inclusion ratio was served as index, the effects of inclusion temperature, inclusion time and the ratio of sulfobutyl ether-β-cyclodextrin to butylphthalide on the inclusion process were investigated by using response surface method. The optimal inclusion process was predicted according to the formulation which was established and fitted by multi-linear equation, second-order polynomial equation and the third-order polynomial equation. Results The optimum inclusion technology of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex was as follows: inclusion temperature was 67 ℃, inclusion time was 2.09 h, the input ratio of sulfobutyl ether-β-cyclodextrin to butylphthalide was 2.6:1. The deviation of inclusion ratio between actual value and predicted value was 2.4%. Conclusion Mathematical model established by central composite design and response surface method has a good prediction, which can be used to optimize the preparation process of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex.

Key words: Butylphthalide ; Sulfobutyl ether-β-cyclodextrin; ; Inclusion complex ; Technology optimization ; Central composite design-response surface methodology

丁苯酞(butylphthalide,NBP)为dl-3-正丁基-1(3H)-异苯并呋喃酮,是人工合成的消旋体,左旋体存在于芹菜籽中,与天然的芹菜甲素结构相同[1]。丁苯酞可提高脑血管内皮一氧化氮(NO)和前列腺素(PGI2)的水平,降低颈内动脉血管阻力,增加其血流量,促进梗死灶周微血管数量增加,显著改善脑缺血区的微循环和血流量;此外还可提高线粒体膜流动性,恢复线粒体膜电位,提高线粒体ATP酶活性,增加线粒体呼吸链复合酶Ⅳ活性,提高抗氧化酶活性,保护线粒体,减少神经细胞凋亡。丁苯酞制剂临床上用于急性缺血性脑卒中,但丁苯酞在水中几乎不溶,且其溶解度会影响体内生物利用度[2],从而限制其临床上的应用。目前上市的丁苯酞注射剂为羟丙基-β-环糊精增溶产品。磺丁基醚-β-环糊精是水溶性比羟丙基-β-环糊精更强、肾脏毒性更小、注射用更安全的药用辅料[2]。将丁苯酞包裹于磺丁基醚-β-环糊精中,可有效提高丁苯酞溶解度[3],更好改善注射剂的安全性。为了得到稳定的丁苯酞-磺丁基醚-β-环糊精包合物的制备工艺,笔者采用星点设计-效应面法对包合工艺进行优化。

1 仪器与试药
1.1 仪器

高效液相色谱仪(Waters公司);差示扫描量热仪(Perkin-Elmer公司);恒温水浴振荡器(金坛市福华仪器有限公司);冷冻干燥机(上海东富龙科技股份有限公司)。

1.2 试药

磺丁基醚-β-环糊精(石药集团,批号:160101,分子量:2 163);丁苯酞(石药集团,批号:D150711);丁苯酞对照品(中国食品药品检定研究院,批号:101035-201502);乙醇(天津光复科技发展有限公司,批号:20150806,分析纯)。

2 方法与结果
2.1 丁苯酞-磺丁基醚-β-环糊精包合物的制备

将一定量磺丁基醚-β-环糊精加入到水中,在一定温度下使磺丁基醚-β-环糊精溶解,依照各组实验设计,置规定温度的恒温振荡水浴中,将一定量的丁苯酞乙醇溶液滴入,振荡一定时间后取出,继续振荡至室温,用孔径0.45 μm微孔滤膜滤过,除去未被包裹的丁苯酞,将滤液进行冷冻干燥,制得丁苯酞-磺丁基醚-β-环糊精包合物。

2.2 包合率测定

以包合率(Y)作为考察包合效果的指标。称定包合物20 mg,用体积比为1:1的乙醇水溶液溶解后定容50 mL,用孔径0.45 μm微孔滤膜滤过,稀释至适宜浓度用HPLC检测丁苯酞的含量,Y=包合物中丁苯酞质量/丁苯酞投料总质量×100%,Y反映丁苯酞在磺丁基醚-β-环糊精中的包封效果。

2.3 测定法

2.3.1 色谱条件 仪器Waters e2695-2998;色谱柱:Agilent ZORBAX Eclipse XDB-C18(250 mm×4.6 mm,5 μm);柱温:40 ℃;流动相:0.05 mol·L-1醋酸钠溶液(以醋酸调pH值至4.5)-乙腈-(40:60);流速:1 mL·min-1;检测波长228 nm;进样量10 μL[4]

2.3.2 方法学结果 丁苯酞的进样浓度在 5~100 μg·mL-1内线性关系良好,r=0.999 8;连续进样6次,丁苯酞对照品峰面积的RSD值为1.32%,表明仪器精密度良好;同一样品平行制备供试品溶液6份,丁苯酞含量的RSD值为1.68%,方法重复性良好;供试品溶液在24 h内保持稳定,RSD值为1.66%(n=6);低(80%)、中(100%)、高(120%)平均加样回收率分别为98.9%,101.2%,102.3%(n=9)。对照品溶液、供试品溶液、阴性对照的色谱图见图1。

图1 3种溶液HPLC色谱图
A.空白辅料(SBE-β-CD);B.对照品;C.供试品;1.丁苯酞

Fig.1 HPLC Chromatograms of three kinds of solution
A.blank excipient (SBE-β-CD);B.control;C.sample;1.butylphthalide

2.4 包合工艺的优化

2.4.1 单因素实验 对影响包合效果的包合温度、包合时间、磺丁基醚-β-环糊精与丁苯酞投料比3个因素进行考察。以包合率为指标,进行单因素实验。

①包合温度:称取磺丁基醚-β-环糊精6份(每份0.4 g),分别加入水20 mL中,制备丁苯酞-磺丁基醚-β-环糊精包合物,固定包合时间为3 h、磺丁基醚-β-环糊精与丁苯酞投料摩尔比为4:1,分别在50,60,65,70,80 ℃下进行实验,计算Y值。结果表明当温度大于60 ℃时,温度升高对包合效果基本无影响。

②包合时间:称取磺丁基醚-β-环糊精6份(每份0.4 g),分别加入水20 mL中,制备丁苯酞-磺丁基醚-β-环糊精包合物,固定包合温度为60 ℃、磺丁基醚-β-环糊精与丁苯酞投料摩尔比为4:1,分别在0.5,1,1.5,2,2.5,3 h下进行实验,计算Y值。结果表明当包合时间大于2 h时,延长包含时间对包合效果基本无影响。

③磺丁基醚-β-环糊精与丁苯酞投料比:称取磺丁基醚-β-环糊精5份(每份0.4 g),分别加入水20 mL中,制备丁苯酞-磺丁基醚-β-环糊精包合物,固定包合时间为2 h、包合温度为60 ℃,制备不同磺丁基醚-β-环糊精与丁苯酞投料比包合物,计算Y值。结果表明磺丁基醚-β-环糊精与丁苯酞摩尔比>2:1时,Y值保持不变包合效果较理想。

2.4.2 星点设计-效应面法优化丁苯酞-磺丁基醚-β-环糊精包合物制备工艺 实验设计:采用星点设计,参照单因素实验结果,考察包合温度、包合时间、磺丁基醚-β-环糊精与丁苯酞投料比3个因素对包合效果的影响,并通过效应面法优化包合工艺。设定包合温度、包合时间、磺丁基醚-β-环糊精与丁苯酞投料比3个因素,根据星点设计原理,每个因素设置5个水平,见表1,计算包合率(Y),见表2。

表1 丁苯酞-磺丁基醚-β-环糊精星点设计因素水平
Tab.1 Levels and factors of central composite of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex
水平 时间
(A)/h
温度
(B)/℃
磺丁基醚-β-环糊精与
丁苯酞投料比(C)/
(mol:mol)
1.68 2.50 80 4:1
1 2.09 73.92 3.39:1
0 1.50 65 2.5:1
-1 0.91 56.08 1.61:1
-1.68 0.50 50 1:1

表1 丁苯酞-磺丁基醚-β-环糊精星点设计因素水平

Tab.1 Levels and factors of central composite of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex

表2 丁苯酞-磺丁基醚-β-环糊精星点设计实验结果
Tab.2 Results of central composite design of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex
序号 时间
(A)/h
温度
(B)/℃
磺丁基醚-β-环糊精与
丁苯酞投料比(C)
包合率/
%
1 1.50 50.00 2.50 86.17
2 1.50 65.00 2.50 84.10
3 0.50 65.00 2.50 88.31
4 0.91 56.08 3.39 68.70
5 2.09 56.08 3.39 74.41
6 1.50 65.00 2.50 86.97
7 1.50 65.00 2.50 83.26
8 1.50 80.00 2.50 65.11
9 0.91 56.08 1.61 68.03
10 1.50 65.00 4.00 71.38
11 1.50 65.00 2.50 86.76
12 2.09 56.08 1.61 63.57
13 0.91 73.92 1.61 70.01
14 1.50 65.00 1.00 81.94
15 2.09 73.92 3.39 81.06
16 0.91 73.92 3.39 75.25
17 2.49 65.00 2.50 60.24
18 1.50 65.00 2.50 86.33
19 2.09 73.92 1.61 82.79
20 1.50 65.00 2.50 88.12

表2 丁苯酞-磺丁基醚-β-环糊精星点设计实验结果

Tab.2 Results of central composite design of butylphthalide sulfobutyl ether-β-cyclodextrin inclusion complex

2.4.3 模型拟合与方差分析 利用Design-Expert软件对表2数据分别进行Linear、Quadratic、Cubic拟合,得到因变量Y对自变量A、B、C的多元线性回归、二项式和三项式拟合方程。

多元线性回归拟合方程:Y=78.19+4.84A-0.16B-0.15C,模型P=0.259 4,失拟项P=0.001 2,R=0.201 2。

二项式拟合方程:Y=87.02+4.88A-0.16B-0.15C+1.86AB+0.025AC-1.36BC-4.82A2-4.15B2-3.97C2,模型P=0.131 9,失拟项P=0.001 8,R=0.653 8。

三项式拟合方程:Y=87.02+8.13A-5.87B-2.95C+1.86AB+0.025AC-1.36BC-4.82A2-4.15B2-3.978C2-1.93ABC+9.757A2B+4.78A2C-5.62AB2,模型P=0.000 3,失拟项P=0.483 8,R=0.984 0。

多元线性回归拟合方程R值较低,自变量与因变量的线性关系较差;多元二项式拟合方程不具有显著性,R值较低;多元三项式拟合方程有显著性,R值高,模型P值小,失拟项不显著,采用多元三项式拟合方程建立的模型拟合效果最好。采用ANOVA分析,方差分析结果见表3。

表3 三项式拟合模型方差分析
Tab.3 Variance analysis on trinomial fitting model
变异来源 平方和 自由度 均方 F P
模型 1 565.60 13 120.43 28.20 0.000 3
时间(A) 373.74 1 373.74 87.84 <0.000 1
温度(B) 194.83 1 194.83 45.79 0.000 5
磺丁基醚-β-环糊精与 49.30 1 49.30 11.59 0.014 4
丁苯酞投料比(C)
AB 27.75 1 27.75 6.52 0.043 3
AC 5.0×10-3 1 5.0×10-3 1.175×10-4 0.973 8
BC 14.91 1 14.91 3.50 0.110 4
A2 335.33 1 335.33 78.81 0.000 1
B2 248.02 1 248.02 58.29 0.000 3
C2 226.72 1 226.72 53.28 0.000 3
ABC 29.72 1 29.72 6.99 0.038 4
A2B 315.25 1 315.25 74.09 0.000 1
A2C 75.70 1 75.70 17.79 0.005 6
AB2 104.60 1 104.60 24.58 0.002 6
AC2 0.00 0
B2C 0.00 0
BC2 0.00 0
A3 0.00 0
B3 0.00 0
C3 0.00 0
残差 25.53 6 4.25
失拟项 2.62 1 2.62 0.57 0.483 8
纯误差 22.91 5 4.58
总和 1 591.13 19

表3 三项式拟合模型方差分析

Tab.3 Variance analysis on trinomial fitting model

结果显示,该模型F为28.20,概率P为0.000 3,表明模型极显著;模型复相关系数为0.984 0,说明该方程的因变量与全体自变量间关系显著;模型变异系数为2.64%,说明该模型精度良好;失拟项F值为0.57,概率P为0.483 8,说明失拟项不显著,回归方程拟合良好。

2.4.4 最佳包合工艺 由Design-Expert软件可得出最佳包合工艺参数,最佳包合工艺为:包合温度67.44 ℃,包合时间2.09 h,磺丁基醚-β-环糊精与丁苯酞投料比2.61:1。预测在此工艺下制备丁苯酞-磺丁基醚-β-环糊精包合物的包合率为91.23%。

结合实际生产,对理论参数进行取整,确定丁苯酞-磺丁基醚-β-环糊精包合物制备工艺为包合温度67 ℃,包合时间2.09 h,磺丁基醚-β-环糊精与丁苯酞投料摩尔比2.6:1。

2.5 验证实验

采用选取的最佳包合工艺,进行验证性实验。验证实验结果显示,3次实验包合率平均值为93.66%,RSD为0.66%,包合率平均值与预测值相差2.4%。验证实验结果说明星点设计-效应面法得到的拟合方程可以较好地评价包合工艺各影响因素与评价指标的关系,得到的工艺条件稳定、数据准确可靠。

差示扫描量热法对包合物进行鉴定。对磺丁基醚-β-环糊精、丁苯酞和磺丁基醚-β-环糊精物理混合物及包合物进行DSC测定,见图2。DSC结果显示磺丁基醚-β-环糊精及物理混合物均有2个锐吸热峰,而采用最佳包合工艺制备的包合物在第2处为钝吸热峰,呈现全新的热力学特征,说明形成了新的物系。

图2 丁苯酞-磺丁基醚-β-环糊精体系差示扫描量热分析曲线

Fig.2 DSC curves of butylphthalide sulfobutyl ether-β-cyclodextrin system

3 讨论

作为一种新型药用辅料,磺丁基醚-β-环糊精具有其他环糊精衍生物无可比拟的优点[5]:良好的水溶性,血浆蛋白结合率低,体内无缔合,可快速以原型清除;溶血作用减小,肾毒性很低,对粘膜的刺激性也小。磺丁基醚-β-环糊精应用于注射给药,主要是能够提高药物溶解度,使药物在注射时快速达到所需药量,降低注射对给药部位的刺激性,提高溶液状态下药物的稳定性,缓和溶血作用,提高用药安全性。运用磺丁基醚-β-环糊精包合技术,已有6种药物注射剂被FDA批准上市,应用该技术进行药物开发也成为国内外研究的热点[7,8]

研究表明[9],环糊精能够增加胆固醇的溶解度,使其从动脉粥样硬化病变位置被移除,并且在小鼠模型中成功治疗动脉粥样硬化。若结果得以证实,可预测磺丁基醚-β-环糊精与丁苯酞在临床治疗上会有协同作用,这有待于进一步研究探察。

丁苯酞分子量190,3位为手性碳原子,其分子结构进入环糊精的空腔内,因范德华力形成稳定的包合物,而环糊精的磺丁基部位极性较大,易溶于水,可提高包合物的水溶性。温度、时间以及投料比均会对范德华力产生影响,故影响其包和率。

基于上述,本研究中考察丁苯酞-磺丁基醚-β-环糊精包合物制备工艺中包合温度、包合时间和丁苯酞与磺丁基醚-β-环糊精投料比,3个因素的影响顺序为包合时间>包合温度>投料比,三者对包合率的影响显著,其中交互项包合时间和包合温度对包合率影响显著,其他交互项对包合率的影响不显著,表明丁苯酞-磺丁基醚-β-环糊精包含物制备中各自变量与包合率间并非简单线性关系。

在丁苯酞-磺丁基醚-β-环糊精包合工艺优化时,需要同时考察包合温度、包合时间和丁苯酞与磺丁基醚-β-环糊精投料比3个因素的影响。通过星点设计-效应面法对包合工艺进行优化,实验次数少、实验精度高、预测值与实际值更接近,所以本研究使用这种方法进行包合物工艺优化[10]。本研究采用星点设计-效应面法得到丁苯酞-磺丁基醚-β-环糊精包合物制备的最优工艺,并成功制备出丁苯酞-磺丁基醚-β-环糊精包合物,为丁苯酞制剂的开发提供基础。

The authors have declared that no competing interests exist.

参考文献

[1] 方洪巨,杨峻山,胡秋.挥发油成分的研究/ V.芹菜子挥发油的化学成分研究[J].药物分析杂志,1984,4(4):205-208.
[本文引用:1]
[2] 林瑞来. 难溶性药物溶解度的提高方法[J].中国医药指南,2010,8(3):32-33.
[本文引用:2]
[3] 赵孝先,高玲,梁园园,.丁苯酞-磺丁基-β-环糊精包合物的制备与表征[J].中国现代应用药学,2016,33(6):762-767.
目的制备丁苯酞-磺丁基-β-环糊精包合物,并考察其结构和性能。方法采用冷冻干燥法制备包合物,用紫外分光光度法测定其包合率、含量、溶解度、溶出度。通过薄层色谱法、紫外光谱法、红外光谱法、差示扫描量热-热重联用法,验证包合物结构的形成。通过相溶解度法,确定最佳包合比例。通过溶出试验考察形成包合物后丁苯酞溶出速率的变化。结果丁苯酞与磺丁基-β-环糊精可形成摩尔比为1∶1的包合物,包合率为(56.70±1.5)%,平均含量为(5.02±1.6)%。结论制备丁苯酞-磺丁基-β-环糊精包合物的方法简单易行,并且可以有效提高丁苯酞在水中的溶解性和溶出速度。
URL    
[本文引用:1]
[4] 赵春顺,崔升淼,刘晓红,.3-正丁基苯酞含量及有关物质测定的方法学研究[J].沈阳药科大学学报,2004(1):24-27.
[本文引用:1]
[5] STELLA V J,HE Q.Cyclodextrins[J].Toxicol Pathol,2008,36(1):30-42.
DOI:10.1177/0192623307310945      URL    
[本文引用:1]
[6] DEVASARI N,DORA C P,SINGH C,et al.Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin:preparation,characterization,in silico,in vitro and in vivo evaluation[J].Carbohydr Polym,2015,134:547-556.
The aim of the study was to investigate the impact of erlotinib sulfobutyl ether beta-cyclodextrin complex (ERL-SBE-β-CD) on ERL dissolution rate and oral bioavailability. Preliminary comparative phase solubility study indicated ERL exhibited maximum solubility in SBE-β-CD solution. Optimal experimental design confirmed freeze drying of SBE-β-CD:ERL in 1:1.05 molar ratio as the optimum method. Differential scanning calorimetry (DSC), Fourier transformation infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD), proton nuclear magnetic resonance (1H NMR) and two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY NMR) confirmed the inclusion complexation. The in silico computational study, employed to analyze the comparative interactions of ERL with SBE-β-CD and β-CD, indicated ease of ERL-SBE-β-CD complexation. In vitro dissolution and in vivo bioavailability studies further confirmed the ERL-SBE-β-CD as a valuable approach to enhance ERL oral bioavailability with 3.6-fold increase in relative oral bioavailability with higher Cmax (134.29±36.51 vs. 42.36±1.75μg/ml) and AUC0–∞ (2103.47±156.75 vs.580.43±71.91μg/mlh) over the free drug. The complex exhibited 3.2-fold increase in Cmax with 5.4-fold decrease in Tmax (0.5±0.2 vs. 2.7±0.8h) in comparison to pure ERL. Thus, ERL-SBE-β-CD complexation exhibits a potential to enhance oral bioavailability of ERL leading to reduce dose and dose-related side effects.
DOI:10.1016/j.carbpol.2015.08.012      PMID:26428157      URL    
[本文引用:0]
[7] XU C,TANG Y,HU W,et al.Investigation of inclusion complex of honokiol with sulfobutyl ether-β-cyclodextrin[J].Carbohydr Polym,2014,113:9-15.
This study aimed to prepare and characterize an inclusion complex of honokiol (HNK) with sulfobutyl ether-β-cyclodextrin (SB-β-CD). The inclusion complex (HNK/CD COMP) was prepared utilizing a freeze–drying method. Phase-solubility curves were employed to obtain stability constants and thermodynamic parameters. The phase-solubility diagram showed a typical AL-type, indicating that the 1:1 (HNK:SB-β-CD) inclusion complex was formed. The solid inclusion complex was then characterized by differential scanning calorimetry and Fourier transform infrared spectroscopy. Results showed that HNK/CD COMP exhibited a higher drug release rate than free HNK in vitro. A comparative study of the pharmacokinetics between HNK/CD COMP and free HNK was also performed in rats. In vivo results indicated that AUC0–t and Cmax of HNK/CD COMP increased by approximately 158% and 123% compared with those of the free HNK, respectively. These results suggest that SB-β-CD will be potentially useful in the delivery of poorly soluble drugs, such as HNK.
DOI:10.1016/j.carbpol.2014.06.059      PMID:25256452      URL    
[本文引用:1]
[8] REN L,ZHOU Y,WEI P,et al.Preparation and pharma-cokinetic study of aprepitant-sulfobutyl ether-β-cyclodextrin complex[J].AAPS Pharm Sci Tech,2014,15(1):121-130.
Aprepitant (APR), a neurokinin 1 receptor antagonist, is an approved treatment for chemotherapy-induced nausea and vomiting and for post-operative nausea and vomiting. However, it has poor water solubility. This study was performed to optimize the capsule formulation of an inclusion complex of APR with sulfobutyl ether-β-cyclodextrin (SBE-β-CD), and to evaluate its water solubility, dissolution rate, and bioavailability. The complex was prepared through the saturated-aqueous solution method and then characterized by Fourier transform infrared spectroscopy, x-ray powder diffraction, and differential scanning calorimetry. Subsequently, a pharmacokinetic study was performed using liquid chromatography–tandem mass spectrometry. Emend, which features an innovative formulation that incorporates drug nanoparticles with high bioavailability, was used as a reference for comparison with the optimized formulation. As a result, the dissolution rates and extent of release of the test formulation in various media were enhanced relative to those of Emend. The bioavailability of the drug complex was comparable to that of Emend. In summary, the SBE-β-CD complexation could provide a practical and cost-effective option for enhancing the solubility and bioavailability of APR according to our research.
DOI:10.1208/s12249-013-0044-0      PMID:24166668      URL    
[本文引用:1]
[9] ZIMMER S,GREBE A,BAKKE S S,et al.Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming[J].Sci Transl Med,2016,8(333):333.
Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B–containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)–mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.
DOI:10.1126/scitranslmed.aad6100      PMID:27053774      URL    
[本文引用:1]
[10] 刘艳杰,项荣武.星点设计效应面法在药学实验设计中的应用[J].中国现代应用药学,2007,24(6):455-457.
目的介绍星点设计基本原理,在大量文献的基础上对星点设计效应面法进行综述,指出该设计的优点和缺点。方法通过查阅国内外近年来的有关资料和文献,对星点设计效应面法在药学试验设计中的应用进行了分析。结果与结论星点设计效应面法具有试验次数少,精确度高,应用方便的特点,该设计方法可以很好地应用于药学领域。
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
丁苯酞
磺丁基醚--环糊精;
包合物
工艺优化
星点设计-效应面法

Butylphthalide
Sulfobutyl ether-β-cyclod...
Inclusion complex
Technology optimization
Central composite design-...

作者
修宪
田伟
王雪姣
冯彩霞
相会欣
孟阳

XIU Xian
TIAN Wei
WANG Xuejiao
FENG Caixia
XIANG Huixin
MENG Yang