中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(2): 158-162
doi: 10.3870/j.issn.1004-0781.2017.02.010
五酯胶囊对心脏移植受者全血他克莫司浓度的影响*
Effects of Wuzhi Capsules on Tacrolimus Trough Concentration in Heart Transplant Recipients
周红1,, 张菁2, 伍三兰1, 黄怡菲1, 师少军1, 张玉1, 韩勇1,

摘要: 目的探讨心脏移植术后五酯胶囊对他克莫司血浓度的影响,为临床他克莫司个体化剂量调整提供依据。方法回顾性收集心脏移植术后联合使用五酯胶囊受者40例,比较用药前后他克莫司血浓度变化,同时分析受者CYP3A4*1G和CYP3A5*3基因多态性,阐明五酯胶囊发挥作用是否与基因型相关。结果心脏移植受者服用五酯胶囊后他克莫司剂量校正浓度显著增加至2.02倍(P< 0.01),其作用结果与CYP3A4*1G和CYP3A5*3基因型无直接相关性。五酯胶囊与他克莫司联用可显著降低总胆红素(P<0.01),对其他肝、肾指标无影响。结论五酯胶囊能明显升高心脏移植受者全血他克莫司浓度,不增加他克莫司的肝肾毒性,是一种安全、有效的升高他克莫司血浓度的辅助用药。
关键词: 五酯胶囊 ; 他克莫司 ; 移植,心脏 ; 血药浓度

Abstract:
ObjectiveTo investigate the effects of Wuzhi capsules on tacrolimus concentration in heart transplant recipients and provide evidence for individualized dose optimization of tacrolimus. MethodsForty heart transplant recipients receiving Wuzhi capsules were enrolled in this study. Tacrolimus trough concentration was compared before and after coadminstration of Wuzhi capsules. Furthermore, polymorphisms of CYP3A4*1G and CYP3A5*3 were also detected to clarify correlations between genotypes and effects of Wuzhi capsule. ResultsDose-normalized concentration of tacrolimus after coadministartion with Wuzhi capsules was 2.02-fold higher than before, the results of which was not associated with CYP3A4*1G and CYP3A5*3 genotypes. Wuzhi capsule could significantly decrease the total bilirubin (T-BiL), but not other hepatic and renal function. ConclusionDose-normalized concentration of tacrolimus in heart transplant recipients is remarkably increased by Wuzhi capsule. The elevated trough levels rarely result in hepatic and renal toxicity. Wuzhi capsule is a safe, effective, and stable drug to increase the trough concentration of tacrolimus.
Key words: capsules ; Tacrolimus ; Transplant, heart ; Plasma concentration

他克莫司(tacrolimus)属钙调磷酸酶类免疫抑制药,是从土壤真菌发酵液中提取出来的一种二十三元大环内酯类化合物,目前广泛用于肾脏、肝脏、心脏等器官移植受者的抗排异治疗[1]。 该药具有治疗窗窄、药动学个体差异大等作用特点,严重影响临床治疗效果[2]。若器官移植术后血药浓度不能达到并维持在有效的范围,可能增加急性排斥反应发生的风险[3];相反,若浓度过高则可引起严重不良反应的发生[4]。 因此,为获得最佳效果、减少不良反应,常常需要进行治疗药物浓度监测(therapeutic drug monitoring, TDM)。五酯胶囊是从华中五味子中提取脂溶性活性部位而制成的一种中成药,是一种肝细胞损伤拮抗药,广泛用于各种类型肝损伤,对肝功能异常以及无明显诱因的胆红素升高有改善作用[5-6]。目前,已有研究报道五酯胶囊可显著提高健康受试者[7-8]、肾移植受者[9-11]、肝移植受者[12-13]的他克莫司血浓度,但笔者尚未见有关于五酯胶囊对心脏移植受者他克莫司血药浓度影响的报道。同时,不同器官移植术后受者机体情况差异巨大导致他克莫司反应性也存在较大差异。因此,研究五酯胶囊对心移植术后全血他克莫司浓度的影响具有重要临床意义。为此,笔者收集40例心脏移植术后服用大剂量他克莫司但血药浓度仍偏低的患者,分析其合并使用五酯胶囊前后他克莫司血浓度变化,为心脏移植受者合并用药后他克莫司剂量调整提供参考。

1 资料与方法
1.1 临床资料

2014年1月—2016年3月在华中科技大学同济医学院附属协和医院行同种异体原位心脏移植受者共203例,符合本研究患者40例。本研究所有受者符合以下标准:①年龄>18周岁的原位心脏移植受者;②移植术后免疫抑制治疗过程中合并使用五酯胶囊;③合并使用五酯胶囊前后他克莫司剂量和谷浓度可获得;④患者其他临床资料完整。排除标准:①服药不规律,依从性差,存在他克莫司或五酯胶囊过量服用或漏服等情况;②服用五酯胶囊期间同时服用CYP3A4,CYP3A5酶抑制剂和/(或)地尔硫芯卓、伊曲康唑、氟康唑等对他克莫司血药浓度有显著影响的药物;③其他临床资料不全者。共纳入心脏移植受者40例,男36例,女4例,年龄20~70岁,平均(50.0±13.6)岁,体质量44~95 kg,平均(70.2±12.2)kg。移植前扩张型心肌病者26例,冠状动脉粥样硬化性心脏病者7例,肥厚型非梗阻性心肌病者2例,心脏肿瘤患者3例,其他心脏疾病2例。

1.2 免疫抑制药物治疗方案

心脏移植术后采用他克莫司+吗替麦考酚酯+醋酸泼尼松三联免疫抑制方案,他克莫司(商品名:普乐可复,日本安斯泰来制药有限公司,进口药品注册证号:H20090692,规格:每粒0.5,1 mg)按患者体质量给药,根据血药浓度调整剂量。移植术后1个月他克莫司血药浓度谷值维持在10~15 ng·mL-1。吗替麦考酚酯(商品名:骁悉,上海罗氏制药有限公司,进口药品注册证号:H20040552,规格:每粒0.25 g)剂量为500 或750 mg,每12 h给药一次。醋酸泼尼松(浙江仙琚制药股份有限公司,批准文号:国药准字H33021207,规格:每片5 mg)维持剂量在10~15 mg·d-1。 移植受者2周内血药浓度不能达靶浓度范围或他克莫司剂量达极量(每日不超过8 mg)浓度仍不达标者,合用五酯胶囊(四川禾正制药有限责任公司,批准文号:国药准字Z10983013,规格:每粒含五味子甲素11.25 mg),每日2次,每次1粒。

1.3 他克莫司浓度监测

于测定日清晨服药前空腹采集静脉血2 mL,乙二酸四醋酸(EDTA)抗凝,采用Viva-E 药物浓度分析仪(德国Siemens公司)监测全血谷浓度(C0)。通常一周监测2或3次,若他克莫司剂量调整或联用五酯胶囊2~3 d后监测。本文中的剂量为体质量校正剂量,浓度采用剂量校正浓度(C0/D)[14]

1.4 CYP3A4和CYP3A5基因分型

采患者静脉血2 mL置于EDTA 抗凝管中,取全血200 μL,依照Magen核酸提取试剂盒(广州美基生物技术有限公司)说明书提取患者基因组DNA,置于-80 ℃冰箱保存。CYP3A4*1G(rs2242480,G20230A)采用适当引物扩增,焦磷酸测序(德国QIAGEN公司PyroMark Q24焦磷酸测序仪),CYP3A5*3(rs776746,A6986G)检测由武汉友芝友生物技术有限公司采用Sanger法测序(美国AB公司ABI3730xl测序仪)。本研究中基因检测已获本院伦理委员会批准,且由患者本人或家属自愿签署知情同意书。

1.5 统计学方法

采用SPSS 18.0版统计软件进行统计学处理,计量资料以均数±标准差( x ̅ ±s)表示,组间均数比较进行配对t检验,计数资料以率表示,采用χ2检验进行Hardy-Weinberg遗传平衡检验。以P<0.05为差异有统计学意义。

2 结果
2.1 五酯胶囊对他克莫司血浓度的影响

40例心脏移植术后受者服用他克莫司1~2周,谷浓度仍偏低,加服五酯胶囊前后他克莫司体质量校正剂量和剂量校正浓度的变化见表1。加服五酯胶囊3 d后他克莫司剂量校正浓度升高至2.02倍(P<0.01),15例受者(37.5%)他克莫司达靶浓度范围(10~15 ng·mL-1),15例受者(37.5%)浓度低于靶浓度范围,其余10例高于靶浓度范围,但未达危急值(20 ng·mL-1)。对未达标患者,基于浓度监测结果进行他克莫司剂量调整,所有患者均可在加服五酯胶囊2周后达靶浓度范围。

表1 心脏移植受者联用五酯胶囊前后他克莫司剂量校正浓度变化
Tab.1 Variation of the corrected concentration of tacrolimus before or after the treatment of Wuzhi capsules in heart transplant recipientsx¯±s,n=40
时间 体质量校正剂量/
(mg·kg-1)
剂量校正浓度(C0/D)/
[(ng·mL-1)/(mg·kg-1)]
联用前 0.072±0.007 72.07±36.56
联用后3 d 0.078±0.007 145.72±51.39*1
联用后浓度达标时 0.082±0.010 55.99±41.59*1

Compared with the data before treatment,*1 P<0.01

与联用前比较,*1 P<0.01

表1 心脏移植受者联用五酯胶囊前后他克莫司剂量校正浓度变化

Tab.1 Variation of the corrected concentration of tacrolimus before or after the treatment of Wuzhi capsules in heart transplant recipientsx¯±s,n=40

2.2 不同CYP3A4和CYP3A5基因型患者服用五酯胶囊前后他克莫司血浓度的变化

分析40例受者的CYP3A4*1G和CYP3A5*3基因位点(结果见图 1), 经Hardy-Weinberg遗传平衡检验,发现CYP3A4*1G符合遗传平衡(P>0.05),而CYP3A5*3(P<0.01)不符合遗传平衡。不同基因分型对应服用五酯胶囊前后剂量校正浓度变化见表2,五酯胶囊均能显著提高不同 CYP3A4和CYP3A5基因型受者他克莫司浓度,平均提高约2倍,但不同基因型之间差异无统计学意义。

图1 CYP3A4*1G和CYP3A5*3测序图

Fig.1 Sequencing profile of CYP3A4*1G and CYP3A5*3

表2 40例患者联用五酯胶囊前后不同CYP3A4和CYP3A5基因型受者他克莫司血药浓度变化
Tab.2 Variation of the tacrolimus concentration in blood of the recipients with different genotype of CYP3A4 and CYP3A5 before or after the treatment of Wuzhi capsulesx¯±s
基因型 例数 C0/D/[(ng·mL-1/(mg·kg-1)] 服药前后
C0/D
变化/倍
P
联用前 联用3 d后
CYP3A4 0.691
*1/*1 11 60.47±20.91 132.16±43.60 2.19
*1/*1G 25 77.79±39.95 154.92±47.90 1.99
*1G/*1G 4 68.21±48.62 125.46±87.81 1.84
CYP3A5 0.360
*1/*1 8 55.15±21.62 116.66±49.78 2.12
*1/*3 32 76.30±38.52 152.98±49.90 2.00

表2 40例患者联用五酯胶囊前后不同CYP3A4和CYP3A5基因型受者他克莫司血药浓度变化

Tab.2 Variation of the tacrolimus concentration in blood of the recipients with different genotype of CYP3A4 and CYP3A5 before or after the treatment of Wuzhi capsulesx¯±s

2.3 心脏移植受者加服五酯胶囊前后肝肾功能变化

40例心脏移植受者加服五酯胶囊前后肝肾功能指标变化见表3。受者加服五酯胶囊1周后丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、血尿素氮(BUN)、血肌酐(SCr)等与加服前比较差异无统计学意义,服用五酯胶囊后可显著降低移植受者总胆红素含量(P< 0.01)。

表3 心脏移植受者加服五酯胶囊前后肝肾功能变化
Tab.3 Changes of hepatic and renal function before and after administration of Wuzhi capsules in heart transplant recipientsx¯±s,n=40
时间 ALT AST T-BiL/
(μmol·L-1)
BUN/
(mmol·L-1)
SCr/
(μmol·L-1)
(U·L-1)
联用前 53.35±33.36 23.6±10.54 17.46±7.99 9.37±3.86 69.37±22.42
联用1周后 46.93±25.86 21.13±10.33 13.80±6.43 10.16±9.47 70.04±26.11
t 1.362 1.623 4.538 0.590 0.220
P 0.181 0.113 <0.001 0.559 0.827

表3 心脏移植受者加服五酯胶囊前后肝肾功能变化

Tab.3 Changes of hepatic and renal function before and after administration of Wuzhi capsules in heart transplant recipientsx¯±s,n=40

3 讨论

异体心脏移植术后,受者必须终生服用免疫抑制药预防排斥反应的发生。由于环孢素的肾毒性和肝毒性明显,现已逐渐被他克莫司所取代。不同国家、不同移植中心采用的他克莫司稳态谷浓度范围不同[15-16],我院心脏移植中心主要参考国际心肺移植协会指南[17],推荐心脏移植术后2个月他克莫司谷浓度维持在10~15 ng·mL-1,3~6个月维持在8~12 ng·mL-1,半年后浓度维持在5~10 ng·mL-1,2年后浓度维持在6~8 ng·mL-1。但临床有部分患者虽每天服用大剂量他克莫司(8 mg·d-1),仍无法获得满意的血药浓度,大大提升急性排斥反应发生的风险。

近年来,关于五酯胶囊对他克莫司血药浓度影响已展开广泛研究,研究表明健康受试者合用五酯胶囊前后他克莫司AUC0-24hCmax分别增加164.2%和227.1%[7-8]。对肾移植受者,服用五酯胶囊前后他克莫司谷浓度增加262%[9-11];对肝移植受者,五酯胶囊也能显著增加他克莫司血药浓度[12-13]。由于心脏移植在全国范围内开展的数量远远低于肝、肾移植,临床上五酯胶囊对心脏移植术后他克莫司血药浓度的影响笔者未见报道。近年来,我院心脏移植手术年平均超过100例,位居全国前列。自2014年开始,我院临床药师与心外科医生合作,从203例在我院接受心脏移植的患者中,收集40例心脏移植术后使用大剂量他克莫司浓度仍无法达标的受者资料,发现合并使用五酯胶囊后类心脏移植受者他克莫司剂量校正浓度显著提高约2倍,同时对受者肝肾功能不产生显著影响,提示五酯胶囊是一种安全、有效的升高心脏移植受者他克莫司血药浓度的辅助用药。本研究报道心脏移植受者联用五酯胶囊时他克莫司血药浓度的变化,并明确五酯胶囊具体升高他克莫司浓度的倍数,为五酯胶囊在临床合理使用提供参考。

另外,因五酯胶囊升高他克莫司血药浓度主要与其抑制CYP3A4/5酶活性,从而减慢他克莫司代谢有关[18]。为进一步明确五酯胶囊对他克莫司的作用是否与CYP3A4/5基因型有关,笔者分析了目前已知的亚洲人群中突变频率最高的两个位点CYP3A4*1G和CYP3A5*3。本研究未检测到CYP3A5慢代谢型(*3/*3)患者服用五酯胶囊,可能因该类型患者他克莫司较容易达靶浓度范围,一般无需联用五酯胶囊。笔者在本研究发现五酯胶囊对CYP3A4三种基因型和CYP3A5 *1/*1,*1/*3两种基因型受者他克莫司血药浓度均有显著提高作用,提示心脏移植术后当血药浓度不达标时,辅助使用五酯胶囊是有效方案。另外,笔者对CYP3A4*1G和CYP3A5*3的基因型频率及等位基因频率分布进行Hardy-Weinberg遗传平衡检验,发现CYP3A4*1G符合遗传平衡(P>0.05),而CYP3A5*3不符合遗传平衡。出现该现象的原因可能为本研究为回顾性研究,不干预临床用药,难以获得CYP3A5慢代谢型患者联用五酯胶囊的数据。同时,受客观病例数的限制,本研究的结论尚需在将来通过前瞻性随机对照研究,在更多的心脏移植受者病例中进一步加以证实。

The authors have declared that no competing interests exist.

参考文献

[1] STAATZ C E, TETT S E.Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation[J].Clin Pharmacokinet, 2004,43(10):623-653.
Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within 鈥榓cceptable鈥 ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immunosuppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.
DOI:10.2165/00003088-200443100-00001      PMID:15244495      URL    
[本文引用:1]
[2] HESSELINK D A, BOUAMAR R, ELENS L, et al.The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation[J].Clin Pharmacokinet, 2014,53(2):123-139.
The calcineurin inhibitor tacrolimus is the backbone of immunosuppressive drug therapy after solid organ transplantation. Tacrolimus is effective in preventing acute rejection but has considerable toxicity and displays marked inter-individual variability in its pharmacokinetics and pharmacodynamics. The genetic basis of these phenomena is reviewed here. With regard to its pharmacokinetic variability, a single nucleotide polymorphism (SNP) in cytochrome P450 (CYP) 3A5 (6986A > G) has been consistently associated with tacrolimus dose requirement. Patients expressing CYP3A5 (those carrying the A nucleotide, defined as the *1 allele) have a dose requirement that is around 50 % higher than non-expressers (those homozygous for the G nucleotide, defined as the *3 allele). A randomised controlled study in kidney transplant recipients has demonstrated that a CYP3A5 genotype-based approach to tacrolimus dosing leads to more patients reaching the target concentration early after transplantation. However, no improvement of clinical outcomes (rejection incidence, toxicity) was observed, which may have been the result of the design of this particular study. In addition to CYP3A5 genotype, other genetic variants may also contribute to the variability in tacrolimus pharmacokinetics. Among these, the CYP3A4*22 and POR*28 SNPs are the most promising. Individuals carrying the CYP3A4*22 T-variant allele have a lower tacrolimus dose requirement than individuals with the CYP3A4*22 CC genotype and this effect appears to be independent of CYP3A5 genotype status. Individuals carrying the POR*28 T-variant allele have a higher tacrolimus dose requirement than POR*28 CC homozygotes but this association was only found in CYP3A5-expressing individuals. Other, less well-defined SNPs have been inconsistently associated with tacrolimus dose requirement. It is envisaged that in the future, algorithms incorporating clinical, demographic and genetic variables will be developed that will aid clinicians with the determination of the tacrolimus starting dose for an individual transplant recipient. Such an approach may limit early tacrolimus under-exposure and toxicity. With regard to tacrolimus pharmacodynamics, no strong genotype-phenotype relationships have been identified. Certain SNPs associate with rejection risk but these observations await replication. Likewise, the genetic basis of tacrolimus-induced toxicity remains unclarified. SNPs in the genes encoding for the drug transporter ABCB1 and the CYP3A enzymes may relate to chronic nephrotoxicity but findings have been inconsistent. No genetic markers reliably predict new-onset diabetes mellitus after transplantation, hypertension or neurotoxicity. The CYP3A5*1 SNP is currently the most promising biomarker for tailoring tacrolimus treatment. However, before CYP3A5 genotyping is incorporated into the routine clinical care of transplant recipients, prospective clinical trials are needed to determine whether such a strategy improves patient outcomes. The role of pharmacogenetics in tacrolimus pharmacodynamics should be explored further by the study of intra-lymphocyte and tissue tacrolimus concentrations.
DOI:10.1007/s40262-013-0120-3      Magsci    
[本文引用:1]
[3] RICHARDS K R, HAGER D, MUTH B, et al.Tacrolimus trough level at discharge predicts acute rejection in moderately sensitized renal transplant recipients[J].Transplantation, 2014, 97(10):986-991.
Background. Goal tacrolimus concentrations for the prevention of rejection in sensitized renal transplant recipients are not well established.<br/>Methods. We evaluated the association between discharge tacrolimus trough concentration and the incidence of biopsy-proven acute rejection (BPAR) in 216 moderately sensitized renal transplant recipients (negative flow crossmatch and positive donor-specific antibodies) treated with tacrolimus.<br/>Results. At transplant, the mean +/- standard deviation (SD) peak panel-reactive antibody was 60 +/- 33 and median donor-specific antibody level was a mean fluorescence intensity of 710 (interquartile range, 328-1202). The mean +/- SD tacrolimus trough concentration at discharge (median postoperative day, 5; interquartile range, 4-7) was 7.6 +/- 3.7 ng/dL. Patients were divided into two groups based on a discharge tacrolimus trough concentration of 8 ng/mL. Baseline characteristics were similar between groups. Thirty-four (28.6%) of the 119 patients with a tacrolimus trough concentration less than 8 ng/mL and 19 (19.6%) of 97 patients with concentrations of 8 ng/mL or greater experienced BPAR during a median follow-up of 14 +/- 4.7 months (P=0.04). Adjusting for age, race, donor status, and peak panel-reactive antibody, a discharge tacrolimus trough concentration less than 8 ng/mL was significantly associated with a higher risk of BPAR (hazard ratio, 1.84; 95% confidence interval, 1.04-3.25; P=0.04). Serum creatinine, cytomegalovirus, BKviremia, or BK nephropathy at 1 year did not differ between groups.<br/>Conclusions. In a patient population predisposed to BPAR, discharge tacrolimus trough concentration less than 8 ng/mL was associated with a nearly two times greater risk of BPAR.
DOI:10.1097/TP.0000000000000149      Magsci    
[本文引用:1]
[4] SIKMA M A, VAN MAARSEVEEN E M, VAN DE GRAAF E A, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation[J].Am J Transplant, 2015,15(9):2301-2313.
[本文引用:1]
[5] 朱冰. 五酯胶囊及其成分药理研究[J].中国药理学与毒理学杂志,1996, 10(4):260-266.
<P>本文报道了过氧化氢诱发原代培养大鼠肝细胞毒性作用的可能机理. 过氧化氢(0.2~1.0 mmol·L<SUP>-1</SUP>) 温育6 h可以引起大鼠肝细胞坏死性损伤,导致谷丙转氨酶释放增加及细胞存活率下降,加入过氧化氢酶(250 ~1500 U·mL<SUP>-1</SUP>) 及抗氧化剂五味子乙素 (10~100 μmol·L<SUP>-1</SUP>) 均可降低过氧化氢的毒性作用. 加入过氧化氢 (0.6和1.0 mmol·L<SUP>-1</SUP>) 可在6 min内使大鼠肝细胞内钙从180 nmol·L<SUP>-1</SUP>明显持续升高至700 nmol·L<SUP>-1</SUP>以上(约3.5倍). 过氧化氢与肝细胞作用30 min至1 h既可导致细胞膜脂质过氧化,表现为丙二醛蓄积及膜流动性下降,明显早于肝细胞发生坏死性损伤的时间. 肝细胞胞浆中还原型谷胱甘肽(GSH)含量在加入过氧化氢30 min后明显降低,可推测肝细胞在后面的温育中对过氧化氢毒性的敏感性增加. 以上结果证实过氧化氢诱发的原代培养大鼠肝细胞致死性损伤可能与细胞内钙迅速持续增高,细胞膜脂质过氧化及GSH含量下降有关.</P>
Magsci    
[本文引用:1]
[6] 陈翠环,龙辉.五酯胶囊治疗病毒性肝炎及脂肪肝的疗效观察[J].国际医药卫生导报, 2008,14(17):107-109.
目的观察五脂胶囊对病毒性肝炎和脂肪肝引起肝功能异常的治疗疗效。方法选择感染科门诊病毒性肝炎及脂肪肝患者共109例,比较服用五脂胶囊前后的谷丙转氨酶(ALT)、谷草转氨酶(AST)、r-谷氨酰转肽酶(GGT)等生化指标的变化。结果服用五脂胶囊后ALT、AST、GGT等生化指标均明显降低,与用药前比较均有显著性差异(P〈0.05),五脂胶囊对病毒性肝炎的疗效高于脂肪肝(P〈0.05),对病毒性肝炎组的ALT及对脂肪肝组的AST降酶作用较强。结论五脂胶囊对病毒性肝炎、脂肪肝两种肝病患者具有强的降酶作用。
[本文引用:1]
[7] 吴笑春,辛华雯,李罄,.五酯胶囊对健康受试者他克莫司药动学的影响[J].中国新药杂志, 2007,16(8):674-650.
目的:研究健康受试者合用中药制剂五酯胶囊(Wuzhi-capsule,WZ)前后他克莫司 (tacrolimus,Tac)的动力学过程,观察两药是否存在相互作用.方法:研究分两期,12例健康男性志愿者在第一周期单剂口服Tac 2 mg后,开始连续服用五酯胶囊3粒,bid,连服13 d;在第二周期再单剂口服Tac 2 mg,同时服用五酯胶囊3粒.每期口服Tac后即按设计的时间采血,用ELISA法测定全血Tac浓度,并计算药动学参数.结果:合用五酯胶囊前后Tac 的主要药动学参数:AUC0~24 h分别为(129.48±68.90)和(274.82±64.93)μg·L-1·h;t1/2分别为(9.39±3.13)和 (8.11±3.56)h;CL(s)分别为(17.72±17.30)和(6.55±1.55)L·h-1;Tmax分别为(1.42±0.36)和 (1.83±0.25)h;Cmax分别为(22.21±10.61)和(66.44±21.27)μg·L-1;V/F(C)分别为 (179.94±41.27)和(72.81±28.07)L.与合用五酯胶囊前相比,Tac的AUC0~24 h和Cmax分别增加164.2%和227.1%,CL(s)降低49.0%,Tmax显著延迟.结论:五酯胶囊能显著增加Tac的血浓度和生物利用度.
[本文引用:2]
[8] XIN H W, WU X C, LI Q, et al.Effects of schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers[J]. Br J Clin Pharmacol, 2007, 64(4): 469-475.
AIM: To assess the effect of extract (SchE) on the pharmacokinetics of tacrolimus in healthy volunteers.: Twelve healthy male volunteers were orally treated with SchE, three twice daily for 13 days. Pharmacokinetic investigations of oral tacrolimus administration at 2 mg were performed both before and at the end of the SchE treatment period. Whole blood tacrolimus concentrations were determined by enzyme-linked immunosorbent assay. Estimated pharmacokinetic parameters before and with SchE were calculated with noncompartmental techniques.: Following administration of SchE, the average percentage increases of individual increases in AUC, AUMC and C(max) of tacrolimus were 164.2% [95% confidence interval (CI) 70.1, 258.4], 133.1% (95% CI 49.5, 261.3) and 227.1% (95% CI 155.8, 298.4), respectively (P < 0.01 or 0.05). On average, there was a 36.8% (95% CI 13.4, 60.2) increase in tacrolimus t(max) (P < 0.01). The average percentage decreases in CL/F and V/F were 49.0% (95% CI 31.1, 66.9) and 53.7% (95% CI 40.1, 67.4), respectively (P < 0.01).: SchE can increase the oral bioavailability of tacrolimus. The results of this study will add important information to the interaction area between drugs and herbal products.
DOI:10.1111/j.1365-2125.2009.03383.x      PMID:2048562      URL    
[本文引用:2]
[9] 李罄, 辛华雯, 吴笑春,.五酯胶囊对肾移植受者他克莫司血浓度影响的临床研究[J]. 中国临床药理学与治疗学,2009,14(7):804-807.
目的:研究五酯胶囊(Wuzhi-capsule,WZ)与他克莫司(Tacrolimus,Tac)联 合应用对肾移植受者Tac血浓度的影响.方法:45名服用Tac+WZ患者为试验组,45名单服Tac患者为对照组,以Tac全血浓度及肝、肾功能生化检 测指标作为临床评价指标.结果:合用WZ患者Tac全血浓度与合用前比较明显增加(P<0.01),与对照组比较亦有显著性提高(P<0.01).WZ与 Tac合用对肝、肾功能无明显影响.结论:WZ能明显升高肾移植受者Tac血浓度.在升高Tac血浓度的同时,WZ并不增加Tac的肝肾毒性反应.WZ与 Tac合用可减少Tac用药量,节省Tac费用.
URL    
[本文引用:2]
[10] 傅尚希,王立明,朱有华,. 五酯胶囊对肾移植受者他克莫司血浓度的影响[J].药学服务与研究,2009,9(4):275-277.
目的:研究五酯胶囊(Wuzhi-capsule,WZ)与他克莫司(Tacrolimus,Tac)联 合应用对肾移植受者Tac血浓度的影响.方法:45名服用Tac+WZ患者为试验组,45名单服Tac患者为对照组,以Tac全血浓度及肝、肾功能生化检 测指标作为临床评价指标.结果:合用WZ患者Tac全血浓度与合用前比较明显增加(P<0.01),与对照组比较亦有显著性提高(P<0.01).WZ与 Tac合用对肝、肾功能无明显影响.结论:WZ能明显升高肾移植受者Tac血浓度.在升高Tac血浓度的同时,WZ并不增加Tac的肝肾毒性反应.WZ与 Tac合用可减少Tac用药量,节省Tac费用.
URL    
[本文引用:0]
[11] 郭晓伟,陈刚,朱兰,. 五酯胶囊对肾移植受者他克莫司血浓度的影响[J]. 华中科技大学学报(医学版),2011,40(1):95-97.
目的 研究五酯胶囊(肝细胞损伤拮抗剂)与他克莫司胶囊(免疫抑制剂)合用,对肾移植受者他克莫司血浓度及其费用的影响.方法 64名肾移植患者,随机分为单用他克莫司组和他克莫司+五酯胶囊合用组,连续服药6个月.以他克莫司全血浓度及肝、肾功能生化检测指标,作为临床评价指标;同时计算患者用他克莫司的费用.结果 与合用前比较,合用五酯胶囊3,6个月后,患者他克莫司全血浓度、他克莫司血浓度/剂量比值,均明显增加(P<0.01或P<0.05),与对照组比较有显著性差异(P<0.01或P<0.05).五酯胶囊与他克莫司合用,对肝、肾功能无明显影响.合用五酯胶囊后,每位患者每年可节约购买他克莫司费的40%~60%,每年节省费用约合1.4~2.5万元.结论 五酯胶囊能明显升高肾移植受者他克莫司血浓度;五酯胶囊与他克莫司合用,可减少他克莫司用药量,明显节省他克莫司费用.
[本文引用:2]
[12] 蒋进发,魏思东,陈国勇. 五酯胶囊对肝移植受者他克莫司血浓度的影响[J]. 中国临床药理学杂志,2012,28(6):411-413.
目的 评价五酯胶囊对肝移植受者术后服用他克莫司血药浓度的影响.方法 选取60例肝移植受者,随机分成2组,试验组32例,口服他克莫司的同时,加服五酯胶囊;对照组28例,服用他克莫司,未服五酯胶囊,连续服药6个月,比较2组他克莫司的用量、血药浓度及肝肾功能生化指标.结果 服用五酯胶囊后,试验组他克莫司血药浓度升高,相应减少服用量,试验组每日服用他克莫司剂量比对照组显著降低(P<0.01);但术后1,2,3,4,6月复查,2组他克莫司血药浓度及肾功能(Cr)无明显差异(P>0.05);试验组与对照组比较,肝功能(ALT)有所改善,差异有统计学意义(P<0.05).结论 五酯胶囊能明显提高肝移植受者他克莫司全血浓度,同时减少他克莫司服用量,降低患者医疗费用.
[本文引用:2]
[13] 张晓君, 王正昕, 郭闻渊,. 五酯胶囊在肝移植术后的临床应用[J]. 肝胆外科杂志,2010,18(2):100-102.
目的 探讨五酯胶囊对肝移植术后服用FK506患者的血药浓度的影响.方法 选取57例肝移植术后口服他克莫司(Tacrolimus,FK506)的患者,加服五酯胶囊,监测FK506血药浓度.结果 一周后FK506全血谷值浓度显著升高(P<0.01),每日服用FK506剂量及临床费用显著降低(P<0.01);随访期间急性排斥反应发生率没有增 加,肝肾功能保持稳定.结论 在保证免疫抑制效果的同时,五酯胶囊可以作为增效剂提高FK506的血药浓度并保持稳定,降低用量.
[本文引用:2]
[14] GIJSEN V, MITAL S, VAN SCHAIK R H,et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. J Heart Lung Transplant,2011, 30(12): 1352 1359.
[本文引用:1]
[15] SODERLUND C, RADEGRAN G.Immunosuppressive therapies after heart transplantation - the balance between under- and over-immunosuppression[J].Transplant Rev (Orlando), 2015, 29(3):181-189.
Since the first heart transplantation (HT) in 1967, survival has steadily improved. Issues related to over- and under-immunosuppression are, however, still common following HT. Whereas under-immunosuppression may result in rejection, over-immunosuppression may render other medical problems, including infections, malignancies and chronic kidney disease (CKD). As such complications constitute major limiting factors for long-term survival following HT, identifying improved diagnostic and preventive methods has been the focus of many studies. Notably, research on antibody-mediated rejection (AMR) and cardiac allograft vasculopathy (CAV) has recently led to the development of nomenclatures that may aid in their diagnosis and treatment. Moreover, novel immunosuppressants (such as mammalian target of rapamycin [m-TOR] inhibitors) and strategies aimed at minimizing the use of calcineurin inhibitors (CNIs) and corticosteroids (CSs), have provided alternatives to the traditional combination maintenance immunosuppressive therapy of CSs, cyclosporine (CSA) or tacrolimus (TAC), and azathioprine (AZA) or mycophenolate mofetil (MMF). Research within this field of medicine is not only extensive, but also in constant progress. The purpose of the present review was therefore to summarize some major points regarding immunosuppressive therapies after HT and the balance between under- and over-immunosuppression. Transplant immunology, rejection, common medical problems related to over-immunosuppression, as well as induction and maintenance immunosuppressive drugs and therapies, are addressed. Copyright 漏 2015. Published by Elsevier Inc.
DOI:10.1016/j.trre.2015.02.005      PMID:25812489      URL    
[本文引用:1]
[16] URBANOWICZ T, STRABURZYNSKA-MIGAJ E, KLOTZKA A, et al.Induction therapy, tacrolimus plasma concentration, and duration if intensive care unit stay are risk factors for peripheral leucopenia following heart transplantation[J].Ann Transplant, 2014,19:494-498.
Abstract Background: Although survival among heart recipients has increased, a limiting factor is chronic adverse effects of immunosuppression therapy. Material and methods: We performed a retrospective analysis of 22 patients (19 men and 3 women) with a mean age of 48 ± 12 years who underwent orthotropic heart transplantation. There were 20 (91%) patients who received induction therapy (basiliximab, Simulect, Novartis Europharm Limited). All patients were treated with standard triple immunosuppressive regimen (tacrolimus, mycophenolate mofetil, and steroids). Results: Patients were divided into 2 groups according to postoperative peripheral cytopenia diagnosis. There were 16 (73%) in the cytopenic group and 6 (27%) in the non-cytopenic group. Mean time of peripheral leucopenia detection was 65 ± 13 days following surgery. The blood leucocyte count was 0.98 ± 0.2 × 10(3)/mm(3) vs. 5.85 ± 0.9 × 10(3)/mm(3) in patients with peripheral cytopenia compared to non-cytopenic patients (p<0.01). There was a statistically important difference in duration of intensive care unit stay between the 2 groups (p<0.01). A correlation between tacrolimus serum concentration and risk for leucopenia was also detected (p<0.05). Conclusions: Basiliximab administration as induction therapy, tacrolimus serum concentration, and duration of intensive care unit stay are risk factors for leucopenia.
DOI:10.12659/AOT.890816      URL    
[本文引用:1]
[17] COSTANZO M R, DIPCHAND A, STARLING R, et al.The international society of heart and lung transplantation guidelines for the care of heart transplant recipients[J]. J Heart Lung Transplant, 2010, 29(8):914-956.
Costanzo MR: Midwest Heart Foundation, Lombard Illinois, USA Dipchand A: Hospital for Sick Children, Toronto Ontario, Canada; Starling R: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Anderson A: University of Chicago, Chicago, Illinois, USA; Chan M: University of Alberta, Edmonton, Alberta, Canada; Desai S: Inova Fairfax Hospital, Fairfax, Virginia, USA; Fedson S: University of Chicago, Chicago, Illinois, USA; Fisher P: Ochsner Clinic, New Orleans, Louisiana, USA; Gonzales-Stawinski G: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Martinelli L: Ospedale Niguarda, Milano, Italy; McGiffin D: University of Alabama, Birmingham, Alabama, USA; Parisi F: Ospedale Pediatrico Bambino Ges霉, Rome, Italy; Smith J: Freeman Hospital, Newcastle upon Tyne, UK Taylor D: Cleveland Clinic Foundation, Cleveland, Ohio, USA; Meiser B: University of Munich/Grosshaden, Munich, Germany; Baran D: Newark Beth Israel Medical Center, Newark, New Jersey, USA; Carboni M: Duke University Medical Center, Durham, North Carolina, USA; Dengler T: University of Hidelberg, Heidelberg, Germany; Feldman D: Minneapolis Heart Institute, Minneapolis, Minnesota, USA; Frigerio M: Ospedale Niguarda, Milano, Italy; Kfoury A: Intermountain Medical Center, Murray, Utah, USA; Kim D: University of Alberta, Edmonton, Alberta, Canada; Kobashigawa J: Cedar-Sinai Heart Institute, Los Angeles, California, USA; Shullo M: University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Stehlik J: University of Utah, Salt Lake City, Utah, USA; Teuteberg J: University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Uber P: University of Maryland, Baltimore, Maryland, USA; Zuckermann A: University of Vienna, Vienna, Austria. Hunt S: Stanford University, Palo Alto, California, USA; Burch M: Great Ormond Street Hospital, London, UK; Bhat G: Advocate Christ Medical Center, Oak Lawn, Illinois, USA; Canter C: St. Louis Children Hospital, St. Louis, Missouri, USA; Chinnock R: Loma Linda University Children's Hospital, Loma Linda, California, USA; Crespo-Leiro M: Hospital Universitario A Coru帽a, La Coru帽a, Spain; Delgado R: Texas Heart Institute, Houston, Texas, USA; Dobbels F: Katholieke Universiteit Leuven, Leuven, Belgium; Grady K: Northwestern University, Chicago, Illlinois, USA; Kao W: University of Wisconsin, Madison Wisconsin, USA; Lamour J: Montefiore Medical Center, New York, New York, USA; Parry G: Freeman Hospital, Newcastle upon Tyne, UK; Patel J: Cedar-Sinai Heart Institute, Los Angeles, California, USA; Pini D: Istituto Clinico Humanitas, Rozzano, Italy; Pinney S: Mount Sinai Medical Center, New York, New York, USA; Towbin J: Cincinnati Children's Hospital, Cincinnati, Ohio, USA; Wolfel G: University of Colorado, Denver, Colorado, USA Delgado D: University of Toronto, Toronto, Ontario, Canada; Eisen H: Drexler University College of Medicine, Philadelphia, Pennsylvania, USA; Goldberg L: University of Pennsylvania, Philadelphia, Pennsylvania, USA; Hosenpud J: Mayo Clinic, Jacksonville, Florida, USA; Johnson M: University of Wisconsin, Madison, Wisconsin, USA; Keogh A: St Vincent Hospital, Sidney, New South Wales, Australia; Lewis C: Papworth Hospital Cambridge, UK; O'Connell J: St. Joseph Hospital, Atlanta, Georgia, USA; Rogers J: Duke University Medical Center, Durham, North Carolina, USA; Ross H: University of Toronto, Toronto, Ontario, Canada; Russell S: Johns Hopkins Hospital, Baltimore, Maryland, USA; Vanhaecke J: University Hospital Gasthuisberg, Leuven, Belgium.
DOI:10.1016/j.healun.2010.05.034      PMID:20643330      URL    
[本文引用:1]
[18] QIN X L, CHEN X, WANG Y, et al.In vivo to in vitro effects of six bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) on the CYP3A/P-glycoprotein-mediated absorption and metabolism of tacrolimus[J].Drug Metab Dispos, 2014, 42(1):193-199.
We recently reported that Wuzhi tablet (WZ; Schisandra sphenanthera extract) can inhibit P-glycoprotein (P-gp)-mediated efflux and CYP3A-mediated metabolism of tacrolimus (FK506) and thus increase the blood concentrations of FK506. Major active lignans of WZ include schisandrin A, schisandrin B, schisandrin C, schisandrol A, schisandrol B, and schisantherin A. Whether and how these six lignans affect the pharmacokinetics of FK506 remains unclear. Therefore, this study aimed to investigate the effects of these lignans on the first-pass absorption and metabolism of FK506 and the involved mechanisms in vitro and in vivo. The results showed that whole-blood concentrations of FK506 were increased to different degrees following coadministration of the six lignans, respectively. Schisandrol B showed the strongest effect on the increase of the area under the concentration-time curve, the oral bioavailability, the gut processes affecting availability, and the hepatic availability of FK506. The reduction of intestinal first-pass effect contributed most to the increase in oral bioavailability of FK506 when coadministered with schisandrol B. In vitro transport experiment showed that schisandrin A, schisandrin B, and schisandrol B inhibited P-gp-mediated efflux of FK506. In vitro metabolism study showed that the inhibitory effect of these six lignans on FK506 metabolism was dose-dependent. In conclusion, the exposure of FK506 in rats was increased when coadministered with these lignans, and schisandrol B showed the strongest effect. Lignans of WZ inhibited P-gp-mediated efflux and CYP3A-mediated metabolism of FK506, and the reduction of intestinal first-pass affected by the lignans was the major cause of the increased FK506 oral bioavailability.
DOI:10.1124/dmd.113.053892      Magsci    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
五酯胶囊
他克莫司
移植,心脏
血药浓度

capsules
Tacrolimus
Transplant, heart
Plasma concentration

作者
周红
张菁
伍三兰
黄怡菲
师少军
张玉
韩勇

ZHOU Hong
ZHANG Jing
WU Sanlan
HUANG Yifei
SHI Shaojun
ZHANG Yu
HAN Yong