中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(3): 252-255
doi: 10.3870/j.issn.1004-0781.2017.03.005
盐酸右美托咪定对神经病理性疼痛的作用及其机制
Effect and Mechanism of Dexmedetomidine Hydrochloride on Neuropathic Pain
杨颖聪, 刘康, 周芳, 孟庆涛, 夏中元

摘要:

目的 观察盐酸右美托咪定对大鼠坐骨神经损伤后的镇痛作用,从离子通道角度探讨其机制。方法 ①将Wistar大鼠随机分为4组:0.9%氯化钠溶液+慢性压迫性损伤(CCI)组(N组)、盐酸右美托咪定+CCI组(D组)、ZD7288+CCI组(Z组)及假手术组(Sham组),每组9只。N组、D组及Z组通过结扎坐骨神经建立神经病理性疼痛模型,Sham组行假手术。术后7 d开始,D组腹腔注射盐酸右美托咪定40 μg·kg-1,Z组腹腔注射ZD7288 10 mg·kg-1,N组腹腔注射等体积0.9%氯化钠溶液,每天1次,连续3 d。术前、CCI术后7 d及给药后3 d进行行为学测试,采用Von Frey纤维测定机械性缩足阈值(PWMT),热辐射法测定缩足潜伏期(TWL)。②采用酶解法分离大鼠腰段背根神经节(DRG)细胞,高倍镜下选择中等大小细胞进行全细胞膜片钳记录。结果 CCI术后7 d,N组、D组及Z组大鼠右后足PWMT、TWL较术前显著降低(P<0.05),Sham组大鼠PWMT、TWL与术前比较差异无统计学意义。给药3 d后,D组与Z组PWMT、TWL较给药前均明显增加,Z组显著大于D组(P<0.05);N组给药前后PWMT和TWL无明显变化。电压钳模式下,在DRG细胞内记录到超极化激活的阳离子电流(Ih)。盐酸右美托咪定(0.1,1,10 μmol·L-1)可显著降低Ih幅度,使电流幅值从(-844.43±386.34)减少到(-215.99±63.90)pA,对Ih电流抑制率分别为(11.87±1.80)%,(35.26±3.65)%和(52.02±5.56)%,呈浓度依赖性改变(P<0.05)。盐酸右美托咪定使Ih激活曲线左移,半激活电位(V1/2)向超极化方向改变(P<0.05),但对电流激活曲线的斜率没有影响。结论 盐酸右美托咪定可明显缓解神经病理性疼痛,这可能与其抑制DRG细胞Ih,减少神经元异常放电有关。

关键词: 右美托咪定,盐酸 ; 疼痛,神经病理性 ; 异常放电 ; 背根神经节

Abstract:

Objective To establish neuropathic pain models, explore the effects and mechanisms of dexmedetomidine on neuropathic pain. Methods Wistar rats were randomly divided into four groups (n=9): 0.9% sodium chloride solution CCI group (N),dexmedetomidine CCI group (D), ZD7288 CCI group (Z) and sham-operated group (Sham). Sciatic nerve ligation was performed in group N, D and Z. The sciatic nerve in group Sham was exposured without ligation. 7 d after surgery, the rats in group D were intraperitoneal injected with dexmedetomidine (40 μg·kg-1), and the rats in group Z were intraperitoneal injected with ZD7288 (10 mg·kg-1)once a day for 3 d.The same volume of 0.9% sodium chloride solution was given at the same time in group N. The behavioral test was performed before and 7 d after operation, as well as 3 d after injection treatment. Mechanical allodynia was assessed by paw withdrawal mechanical threshold (PWMT) to von Frey filaments. Thermal hyperalgesia was assessed by paw thermal withdrawal latency (TWL) to radiant heat. Dexmedetomidine block of HCN channels in dorsal root ganglion (DRG) neurons were confirmed by whole-cell recording. Results 7 d after surgery, the PWMT and TWL of rats in group N, D and Z were decreased significantly (P<0.05). The PWMT and TWL in group Sham were no significant difference before and after operation. Dexmedetomidine significantly increased the levers of PWMT and TWL in group D and Z after treatment for 3 d,and group Z was greater than group D (P<0.05). Dexmedetomidine(0.1,1, 10 μmol·L-1)caused a concentration-dependent decrease in the amplitude of Ih in DRG neurons from (-844.43±386.34)to(-215.99±63.90) pA(P<0.05), and the inhibition rate of Ih was(11.87±1.80)%,(35.26±3.65) % and (52.02±5.56)%, respectively(P<0.05). Dexmedetomidine produced a dose-related shift to the left of the Ih activation, and a negative shift in V1/2 (P<0.05). V1/2 shifted from (-86.21±1.68)to (-103.54±2.01)mV(P<0.05). The slope values were not altered by dexmedetomidine.Conclusion Dexmedetomidine produces a dose-dependently analgesic effect on neuropathic pain after peripheral never injury, which is likely due to the inhibition of Ih and reduction of ectopic spontaneous discharge in DRG neurons.

Key words: Dexmedetomidine, hydrochloride ; Pain, neuropathic ; Ectopic discharge ; Dorsal root ganglion

神经病理性疼痛多由外周或中枢神经系统损伤引起,其主要特征为异常性触摸痛、痛觉过敏及自发性疼痛[1]。研究发现,受损的初级感受神经元的自发性异位放电,以及与脊髓背根神经节(dorsal root ganglion,DRG)大中型神经元相联的有髓神经纤维Aβ与Aδ的过度兴奋导致了机械性痛觉过敏的形成[2]。离子通道是神经元兴奋性的主要决定因素。大量研究表明,超极化激活的环核苷酸门控通道(hyperpolarization-activated cyclic nucleotide gated cation channel,HCN)广泛分布在疼痛通路中,在神经病理性疼痛的发展中发挥重要作用[3-4]

盐酸右美托咪定是一种高效、高选择性的α2肾上腺素受体激动药,具有良好的镇痛作用[5]。笔者将HCN通道转染至HEK293细胞,发现盐酸右美托咪定可抑制表达于HEK293细胞上的HCN通道[6]。盐酸右美托咪定是否也可通过抑制HCN通道电流(Ih)缓解神经病理性疼痛尚不清楚。笔者在本研究建立大鼠坐骨神经慢性压迫性损伤(chronic constriction injury,CCI)模型,观察右美托咪定对神经病理性疼痛的镇痛作用,从离子通道角度探讨其镇痛机制。

1 材料与方法
1.1 实验材料

盐酸右美托咪定注射液(江苏恒瑞医药股份有限公司,批号:09081232),HCN通道特异性阻断药ZD7288(美国Sigma公司),Von Frey纤维(美国Stoelting公司),热痛刺激仪7360(意大利Ugo Basil公司),P-97型微电极拉制仪(美国Sutter Instrment公司),Digidata 1322A数模转换器、Axopatch 200B膜片钳放大器及pCLAMP记录分析软件(美国Molecular Devices公司),IX-71型倒置荧光显微镜(日本Olympus公司)。

1.2 动物与分组

SPF级健康雄性Wistar大鼠,体质量220~250 g,由四川大学实验动物中心提供,实验动物许可证号:SYXK(川)2013-026,实验动物合格证号:0003481。每笼5只,分笼饲养,实验室温度控制在20~26 ℃,相对湿度40%~70%,自由饮水。将Wistar大鼠按随机数字表法分为4组:0.9%氯化钠溶液+CCI组(N组)、盐酸右美托咪定+CCI组(D组)、ZD7288+CCI组(Z组)及假手术组(Sham组),每组9只。D组腹腔注射盐酸右美托咪定剂量40 μg·kg-1,Z组腹腔注射ZD7288 10 mg·kg-1,N组腹腔注射等体积0.9%氯化钠溶液,于CCI术后7 d开始,每天1次,连续3 d。

1.3 CCI模型的制备

参照文献[7]制作CCI模型。大鼠腹腔注射戊巴比妥(50 mg·kg-1)麻醉后,暴露右下肢坐骨神经主干,用4-0丝线在坐骨神经中段结扎4道,间隔2 mm,结扎强度以引起小腿肌肉轻度颤动为宜,仅留下缢痕而不阻断神经血供,然后逐层缝合。Sham组大鼠仅暴露右侧坐骨神经而不结扎。术后连续3 d腹腔注射100 mg·mL-1氨苄西林0.3 mL。

1.4 行为学测试

大鼠术前、CCI术后7 d及注药后3 d进行行为学测试。

1.4.1 机械性缩足阈值(paw withdrawal mechaical threshold,PWMT)的测定 将大鼠置于铁丝网板上,罩于Plantar Von Frey动态足底触觉测试仪的树脂玻璃笼内。大鼠适应环境15 min后,测试者手持Von Frey纤维,用逐渐增强的力度(1.4,2.0,4.0,6.0,8.0,10.0,12.0,15.0,20.0 g)垂直刺激大鼠右后肢足底部,力度以纤维轻微弯曲为准,持续3~5 s,观察大鼠是否出现缩足反应。重复测试3次,每次间隔5 min,引起大鼠缩爪反应的最小刺激力度即为PWMT[8]

1.4.2 热辐射缩足潜伏期(thermal withdrawal latency,TWL)的测定 将大鼠置于厚3 mm的玻璃板上,并罩于树脂玻璃箱内,让大鼠在箱内适应环境15 min,按RUAN等[9]方法,用热辐射刺激仪照射大鼠足底。照射开始至大鼠出现缩足反应的时间为TWL。热刺激强度IR设置为60,为防止大鼠烫伤,照射时间以20 s为限。每只大鼠测定3次,每次间隔5 min,取平均值为大鼠TWL。

1.5 DRG细胞Ih的记录

将Wistar大鼠(18~20 d龄)迅速处死,暴露脊髓,在L4、L5与椎间孔汇合处取下DRG,酶解法分离DRG细胞;再将细胞接种到多聚赖氨酸包被的玻片上,置于37 ℃、二氧化碳(CO2)培养箱中孵育1 h,待细胞贴壁后,高倍镜下选择中等大小细胞行全细胞膜片钳记录。实验所用细胞外液包含:氯化钠(NaCl) 118 mmol·L-1、氯化钾(KCl)25 mmol·L-1、4-羟乙基哌嗪乙磺酸缓冲液(HEPES)10 mmol·L-1、氯化镁(MgCl2)2 mmol·L-1、氯化钙(CaCl2)2 mmol·L-1、葡萄糖 10 mmol·L-1、用氢氧化钠(NaOH)调pH值至7.3;电极内液包含:NaCl 40 mmol·L-1、KCl 120 mmol·L-1、HEPES 10 mmol·L-1、EGTA 10 mmol·L-1、MgCl2 1 mmol·L-1、CaCl2 0.5 mmol·L-1、Mg-ATP 3 mmol·L-1、GTP-Tris 0.3 mmol·L-1,用氢氧化钾(KOH)调pH值至7.2。标本细胞持续细胞外液灌流(2 mL·min-1),破膜后运用电压钳记录Ih;随后用不同浓度(0.1,1,10 μmol·L-1)盐酸右美托咪定的细胞外液灌流,5 min后再次记录Ih。采用pCLAMP数据采集软件和Digidata 1322A数模转换器进行数据采集。Ih由一系列超极化脉冲刺激激发,细胞膜保持电位置于-40 mV,施以跃阶-10 mV的超极化电压刺激,范围-40~-130 mV,-90 mV获得尾电流。标准化尾电流,以尾电流相对值对条件脉冲电压作散点图,再按Boltzmann方程I/Imax=1/{1+exp [(V-V1/2)/K]}进行拟合,采用Origin6.0版软件得出HCN通道的半激活电位(V1/2)和曲线斜率。

1.6 统计学方法

采用SPSS 20.0版及Graphpad prism3.0版统计学软件进行分析与作图,计量资料以均数±标准差( x ̅ ±s)表示,组间均数比较采用单因素方差分析,以P<0.05为差异有统计学意义。

2 结果
2.1 大鼠行为学测试结果

2.1.1 大鼠PWMT变化 CCI术后7 d,N组、D组及Z组大鼠右后足PWMT值较术前显著降低(P<0.05),Sham组大鼠PWMT值与术前比较,差异无统计学意义。给药3 d后,D组与Z组PWMT值均较给药前明显增加,且Z组大于D组,差异有统计学意义(P<0.05);N组给药前后PWMT值无明显变化(表1)。

表1 4组大鼠PWMT变化
Tab.1 Changes of paw withdrawal mechaical threshold(PWMT) in rats x¯±s,g,n=9
组别 术前 术后/给药前 给药后
Sham组 15.07±3.35 15.19±3.30
N组 15.12±3.16 6.04±2.94*1 6.11±3.20
D组 14.87±3.21 5.98±2.75*1 9.11±2.88*2
Z组 14.75±3.09 6.12±3.03*1 13.74±3.21*2*3

Compared with the same group before operation,*1P<0.05;Compared with the same group before administration, *2P<0.05;compared with Group D,*3P<0.05

与本组术前比较,*1P<0.05;与本组给药前比较,*2P<0.05;与D组比较,*3P<0.05

表1 4组大鼠PWMT变化

Tab.1 Changes of paw withdrawal mechaical threshold(PWMT) in rats x¯±s,g,n=9

2.1.2 大鼠TWL变化 CCI术后7 d,N组、D组及Z组大鼠右后足TWL值较术前显著降低(P<0.05),Sham组大鼠TWL值与术前比较差异无统计学意义。给药3 d后,D组与Z组TWL值较给药前均明显增加,且Z组高于D组,差异有统计学意义(P<0.05);N组给药前后TWL值无明显变化(表2)。

2.2 DRG细胞Ih记录

2.2.1 盐酸右美托咪定抑制DRG细胞的Ih 0.1,1,10 μmol·L-1盐酸右美托咪定显著降低了Ih电流幅度,使电流幅值从-844.43±386.34减少到-215.99±63.90 pA(P<0.05),详见图1。0.1,1,10 μmol·L-1盐酸右美托咪定对Ih电流的抑制率分别为(11.87±1.80)%,(35.26±3.65)%和(52.02±5.56)%,呈浓度依赖性改变(P<0.05)。

图1 盐酸右美托咪定对DRG细胞Ih的作用

Fig.1 Effect of dexmedetomidine on Ihof DRG cells

表2 4组大鼠TWL变化
Tab.2 Variation of thermal withdrawal latency(TWL) in four groups of rats x¯±s,s,n=9
组别 术前 术后/给药前 给药后
Sham组 14.46±2.21 14.40±1.99
N组 14.12±2.16 6.67±1.71*1 6.74±1.68
D组 14.87±3.01 6.86±1.82*1 8.97±1.22*2
Z组 14.75±2.59 6.55±1.63*1 13.75±2.51*2*3

Compared with the same group before operation,*P<0.05;Compared with the same group before administration,*1P<0.05;Compared with Group D,*3P<0.05

与本组术前比较,*P<0.05;与给药前比较,*1P<0.05;与D组比较,*3P<0.05

表2 4组大鼠TWL变化

Tab.2 Variation of thermal withdrawal latency(TWL) in four groups of rats x¯±s,s,n=9

2.2.2 盐酸右美托咪定对DRG细胞Ih激活曲线的影响 由Boltzmann方程拟合Ih激活曲线见图2。0.1,1,10 μmol·L-1盐酸右美托咪定产生剂量相关性曲线左移;半激活电位(V1/2)向超极化方向改变,结果从(-86.21±1.68)增加到(-103.54±2.01)mV(P<0.05)。盐酸右美托咪定对Ih激活曲线的斜率无影响(P>0.05)。

图2 盐酸右美托咪定对DRG细胞Ih激活曲线的影响

Fig.2 Effect of dexmedetomidine on the Ihactivation curves of DRG cells

3 讨论

CCI模型是目前使用最广泛的神经病理性疼痛模型之一,其通过扎紧坐骨神经模拟神经病理性疼痛患者的症状,具有高度的重复性。本研究通过建立大鼠CCI模型,观察盐酸右美托咪定对神经病理性疼痛的作用。笔者发现CCI术后7 d,大鼠出现机械性痛觉过敏与热痛敏。腹腔注射盐酸右美托咪定及HCN通道抑制剂ZD7288可显著缓解CCI大鼠的痛觉过敏。电压钳模式下,在中等大小的DRG细胞内记录到超极化激活的阳离子电流Ih。盐酸右美托咪定对HCN通道具有明显的抑制作用,可显著降低Ih电流幅度,使Ih激活曲线产生剂量相关性的左移,半激活电位(V1/2)向超极化方向改变。结果表明盐酸右美托咪定对神经病理性疼痛具有良好的镇痛作用,其机制可能与抑制HCN通道有关。

HCN通道广泛分布在疼痛通路中,在神经病理性疼痛的发展中发挥重要作用[2]。原位杂交、免疫组化和电生理研究显示,感觉神经元表达HCN通道,神经损伤可引起HCN通道亚型改变,Ih幅度增加[10]。向神经病理性疼痛模型的大鼠腹腔或鞘内注射ZD7288可产生明显的镇痛作用,而不影响其运动功能[11]。另外,在受损的坐骨神经周围给予ZD7288也能产生相同的镇痛作用[10]

DRG是感觉传入的第一级神经元,属于假单极初级感觉神经元,胞体发出单个轴突在节内延伸一段后分为两支,一支为外周神经轴突,伸向外周组织,接受感觉信息;另一支为中枢轴突,将外周信息传至脊髓背角,完成初级感觉信息的传递。外周神经损伤或炎症主要引起脊髓DRG大中型感觉神经元Ih上调。Ih升高可使细胞静息膜电位发生除极,增加神经元异常放电,这是神经病理性疼痛产生的主要因素之一[12]

盐酸右美托咪定镇痛效果确切,且不良反应较少,已广泛应用于重症监护室的镇静以及临床麻醉的辅助用药,但在神经病理性疼痛的治疗上还鲜少应用。进一步研究盐酸右美托咪定对神经病理性疼痛的作用机制,将有助于为临床疼痛治疗提供更安全更有效的治疗措施。本研究发现腹腔注射盐酸右美托咪定可缓解外周神经损伤所致的神经病理性疼痛,其机制可能为抑制脊髓DRG神经元Ih,减少感觉神经元异常放电。本研究主要采用电生理学技术,方法较为单一,对DRG的HCN通道蛋白表达尚缺乏数据,今后应加强这部分的研究。

The authors have declared that no competing interests exist.

参考文献

[1] JENSEN T S,FINNERUP N B.Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms[J].Lancet Neurol,2014,13(9):924-935.
Allodynia (pain due to a stimulus that does not usually provoke pain) and hyperalgesia (increased pain from a stimulus that usually provokes pain) are prominent symptoms in patients with neuropathic pain. Both are seen in various peripheral neuropathies and central pain disorders, and affect 15-50% of patients with neuropathic pain. Allodynia and hyperalgesia are classified according to the sensory modality (touch, pressure, pinprick, cold, and heat) that is used to elicit the sensation. Peripheral sensitisation and maladaptive central changes contribute to the generation and maintenance of these reactions, with separate mechanisms in different subtypes of allodynia and hyperalgesia. Pain intensity and relief are important measures in clinical pain studies, but might be insufficient to capture the complexity of the pain experience. Better understanding of allodynia and hyperalgesia might provide clues to the underlying pathophysiology of neuropathic pain and, as such, they represent new or additional endpoints in pain trials.
Magsci    
[本文引用:1]
[2] LANDERHOLM A H, HANSSON P T.Mechanisms of dynamic mechanical allodynia and dysesthesia in patients with peripheral and central neuropathic pain[J]. Eur J Pain,2011,15(5): 498-503.
Eighteen patients with peripheral neuropathic pain (PNeP) and seven patients with central post-stroke pain (CPSP) all suffering from dynamic mechanical allodynia (DMA) in a limb were studied. From recent research it is reasonable to suggest that A-beta fibres constitute the peripheral substrate for DMA in patients with PNeP. The pathophysiological basis for DMA in patients with CPSP is unknown. It is clinically observed that some patients with neuropathic pain report variable intensity of DMA and volunteer that the phenomenon at times is only an unpleasant, i.e., dysesthetic sensation. The pathophysiological basis for dynamic mechanical dysesthesia (DMD) has never been addressed. Based on the aforementioned clinical observations we aimed at investigating if DMA is the hyperbole of DMD both mediated by A-beta fibres in the periphery. A compression/ischemia-induced (differential) nerve block in conjunction with repeated quantitative sensory testing of A-delta and C-fibre function using cold and warm stimuli was used to assess which nerve fibre population that contributes to DMA and DMD, respectively. During the nerve block there was a transition of DMA to DMD in all patients with PNeP and in 3/7 patients with CPSP. The rest of the patients lost DMA without transition to DMD. The transition or loss of DMA without transition occurred early and concurrently in time during the block and was paralleled by a continuous impairment of mainly A-beta fibre function. We therefore suggest DMA to be the hyperbole of DMD, the difference being the number of mechanoreceptive fibres having access to the nociceptive system. (C) 2010 Published by Elsevier Ltd. on behalf of European Federation of International Association for the Study of Pain Chapters.
DOI:10.1016/j.ejpain.2010.10.003      Magsci    
[本文引用:2]
[3] BENARROCH E E.HCN channels: function and clinical implications[J].Neurology, 2013, 80(3):304-310.
Magsci    
[本文引用:1]
[4] 杨舒蕾,龙景东,孙涛,. 脊髓背角HCN 通道在神经病理性疼痛中的作用[J]. 神经解剖学杂志,2015,31(5): 557-561.
目的:观察脊髓背角超极化激活环核苷酸门控阳离子通道(HCN通道)在坐骨神经缩窄性损伤(CCI)所致的慢性神经病理性疼痛中的作用。方法:8周龄成年雄性SD大鼠48只随机分为6组:(1)sham组(假手术组)、(2)CCI组(鞘内注射生理盐水)、(3)~(6)ZD7288+CCI(鞘内分别注射1,10,30,50μg ZD7288),每组8只。CCI及CCI+ZD7288组大鼠在鞘内置管5 d后行CCI术,术后鞘内给药,每日两次,连续14 d;sham组大鼠不进行鞘内置管,仅游离坐骨神经,不结扎。分别于CCI术前1 d,术后1、3、5、7、10、14 d鞘内给药2 h后测定热缩足潜伏期(TWL);术后第7、14 d处死大鼠,取术侧L4~L6脊髓背角,采用Western Blot技术检测脊髓背角HCN1,3,4及磷酸化蛋白激酶A(P-PKA)表达的变化。结果:大鼠CCI术后即形成稳定的热痛敏,TWL明显缩短;与CCI组相比,鞘内给予HCN通道阻滞剂ZD7288可明显延长CCI大鼠的TWL(P0.05)。Western Blot结果显示,与假手术组相比,CCI组大鼠在术后7、14 d术侧脊髓背角HCN1,3,4及P-PKA表达显著增加(P0.05);鞘内给予ZD7288可显著降低CCI大鼠HCN1,3,4及P-PKA的表达(P0.05)。结论:脊髓背角HCN通道的激活可促进CCI所致的神经病理性痛的发生与维持,HCN通道阻滞剂ZD7288具有良好的镇痛效应,ZD7288的镇痛作用可能与其抑制PKA的活性密切相关。
DOI:10.16557/1000-7547.201505004      URL    
[本文引用:1]
[5] GERRESHEIM G,SCHWEMMER U.Dexmedetomidine[J]. Anaesthesist,2013, 62(8): 661-674.
Dexmedetomidine is a highly selective alpha(2)-receptor agonist with sedative, analgetic and anxiolytic effects. It is chemically related to clonidine and has been an authorized drug in Europe since September 2011. Dexmedetomidine enables a level of sedation in which mechanically ventilated patients may be woken by verbal stimulation (Richmond agitation sedation scale RASS 0--3). In this respect dexmedetomidine achieves the same desired effect as propofol and midazolam; however, in direct comparison to a sedation regime with benzodiazepines, dexmedetomidine reduces the prevalence, duration and severity of delirium in intensive care. Patients sedated by dexmedetomidine can statistically be extubated earlier and an influence on duration of stay in the intensive care unit (ICU) has not been shown. Daily therapy costs are approximately 5 times higher than those of propofol but an objective standpoint in relation to clinical cost efficiency is unattainable.
DOI:10.1007/s00101-013-2206-6      Magsci    
[本文引用:1]
[6] YANG Y C,MENG Q T,PAN X,et al.Dexmedetomidine produced analgesic effect via inhibition of HCN currents[J]. Eur J Pharmacol,2014,740: 560-564.
The purpose of this study was to investigate the mechanism by which systemic dexmedetomidine exerts analgesic effect and examine effect of dexmedetomidine on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels currents. The experiments were performed on C57BL/6 J and HCN1 knockout mice. The analgesic effects of intraperitoneal dexmedetomidine (10-40 mu g/kg) were measured by a tail-flick test. Whole-cell clamp recordings were used to examine the properties of cloned HCN subunit currents expressed in HEK 293 cells under control condition and dexmedetomidine administration (0.1-10 mu M). Injection of dexmedetomidine caused a clear time and dose-related increase in the tail-flick latency of both wild type and knockout mice. Compared with the wild type group, the MPE (maximum possible effect) of tail-Rick latency induced by 30 mu g/kg and 40 mu g/kg dexmedetomidine in knockout mice was significantly lower. The alpha(2)-adrenergic receptor antagonist yohimbine (5 mu g/kg) reduced the MPE of dexmedetomidine (30 mu g/kg) both in wild type and knockout mice. Dexmedetomidine(0.1-10 mu M) inhibited HCN1 and HCN2 channel currents in HEK 293 cells, caused a decrease of maximal currents, an increase of inhibition rate of hyperpolarization-activated currents (I-h), and a negative shift in V-1/2 We conclude that dexmedetomidine produces a dose-dependently analgesic effect, and the effect is likely clue to the inhibition of HCN currents. (C) 2014 Elsevier B.V. All rights reserved.
DOI:10.1016/j.ejphar.2014.06.031      PMID:24998873      Magsci     URL    
[本文引用:1]
[7] BENNETT G J,XIE Y K.A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen-inman[J].Pain,1988,33(1):87-107.
A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
DOI:10.1016/0304-3959(88)90209-6      PMID:2837713      URL    
[本文引用:0]
[8] 侯家保,肖兴鹏,夏中元,. 鞘内注射不同剂量右美托咪啶对大鼠的抗伤害效应和脊髓神经毒性[J].中华麻醉学杂志,2011,31(6): 710-713.
目的评价鞘内注射右美托咪啶对大鼠的抗伤害效应和脊髓神经毒性。方法雄性SD大鼠60只,体重180—220g,采用随机数字表法,将其随机分为5组(n=12):对照组(C组)不做任何处理;生理盐水组(N组)鞘内注射生理盐水10m;不同剂量右美托咪啶组分别鞘内注射右美托眯啶0.75μg/kg组(D1组)、1.50μg/kg组(D2组)、3.00μg/kg组(眈组),均用生理盐水稀释至10μl。于鞘内给药前和给药后30min时测定机械缩足阈值(PWMT),于鞘内给药前和给药后60min时测定辐射热甩尾潜伏期(TFL),计算最大抗伤害效应(MPE)百分比。于给药后7、24和48h时,取L1-6。脊髓节段,观察病理学结果,并采用免疫组化法测定c—Fos蛋白表达水平。结果与C组和N组比较,D1组、D2组和D3组给药后30min时PWMT升高,给药后60min时TFL和MPE百分比升高(P〈0.05);与D1组和耽组比较,现组给药后30min时PWMT升高,给药后60min时TFL和MPE百分比升高(P〈0.05);D1组和现组PWMT、TFL和MPE百分比差异无统计学意义(P〉O.05)。与C组和N组比较,D1组和D2组给药后各时点脊髓背角c-Fos蛋白表达差异无统计学意义(P〉0.05),D3组给药后7和24h时脊髓背角c-Fos蛋白表达上调(P〈0.05),给药后48h时脊髓背角c—Fos蛋白表达差异无统计学意义(P〉0.05);与D1组和D2组比较,功组给药后24h时脊髓背角c—Fos蛋白表达上调(P〈O.05)。n组给药后24h时可见脊髓轻度损伤。结论鞘内注射右美托咪啶对大鼠可产生抗伤害效应。鞘内注射3.00μg/kg右美托咪啶抗伤害效应最强,但可产生短暂的脊髓神经毒性。
[本文引用:1]
[9] RUAN J P, ZHANG H X, LU X F,et al.EphrinBs/EphBs signaling is involved in modulation of spinal nociceptive processing through a mitogen-activated protein kinases-dependent mechanism[J].Anesthesiology, 2010, 112(5): 1234-1249.
Abstract BACKGROUND: Our previous studies have demonstrated that EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. The aim of this study was to further investigate whether mitogen-activated protein kinases (MAPKs), as the downstream effectors, participate in modulation of spinal nociceptive information related to ephrinBs/EphBs. METHODS: Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filaments test. Immunofluorescence staining was used to detect the expression of p-MAPKs and of p-MAPKs/neuronal nuclei, or p-MAPKs/glial fibrillary acidic protein double label. C-Fos expression was determined by immunohistochemistry. The expression of p-MAPKs was also determined by Western blot assay. RESULTS: Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal p-MAPKs and c-Fos expression. Immunofluorescence staining revealed that p-MAPKs colocalized with the neuronal marker (neuronal nuclei) and the astrocyte marker (glial fibrillary acidic protein). Inhibition of MAPKs prevented and reversed pain behaviors and the increase of spinal c-Fos expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. Furthermore, pretreatment with MK-801, an N-methyl-d-aspartate receptor antagonist, prevented behavioral hyperalgesia and activation of spinal MAPKs induced by intrathecal injection of ephrinB1-Fc. CONCLUSIONS: These results demonstrated that activation of MAPKs contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.
DOI:10.1097/ALN.0b013e3181d3e0df      PMID:20395829      URL    
[本文引用:1]
[10] JIANG Y Q, XING G G, WANG S L, et al.Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat[J]. Pain, 2008, 137(3): 495-506.
Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.
DOI:10.1016/j.pain.2007.10.011      PMID:18179873      URL    
[本文引用:2]
[11] TAKASU K,ONO H,TANABE M.Spinal hyperpolarization-activated cyclic nucleotide-gated cation channels at primary afferent terminals contribute to chronic pain[J].Pain, 2010,151(1):87-96.
Abstract Hyperpolarization-activated cyclic nucleotide-gated cation channels (HCN channels) have large influences upon neuronal excitability. However, the participation of spinal HCN channels in chronic pain states, where pathological conditions are related to altered neuronal excitability, has not been clarified. Intraperitoneally (i.p.) or intrathecally (i.t.) administered ZD7288, a selective blocker of Ih channels, reduced thermal and mechanical hypersensitivity in mice under neuropathic conditions induced by the partial ligation of the sciatic nerve, while no analgesic effect was observed in na茂ve animals. Moreover, in the mouse formalin test, ZD7288 (i.p. and i.t.) reduced the licking/biting behavior observed during the second phase without affecting the first phase. To further explore the pain-modulatory action of spinal HCN channels, whole-cell patch clamp recordings were made from the visually identified substantia gelatinosa neurons in adult mouse spinal cord slices with an attached dorsal root, and A-fiber- and/or C-fiber-mediated monosynaptic excitatory postsynaptic currents (EPSCs) were evoked by electrical stimulation of the L4 or L5 dorsal root using a suction electrode. Bath-applied ZD7288 reduced A-fiber- and C-fiber-mediated monosynaptic EPSCs more preferentially in slices prepared from mice after peripheral nerve injury. In addition, ZD7288 reduced the frequency of miniature EPSCs without affecting their amplitude in cells receiving monosynaptic afferent inputs, indicating that it inhibits EPSCs via presynaptic mechanisms. The present behavioral and electrophysiological data suggest that spinal HCN channels, most likely at the primary afferent terminals, contribute to the maintenance of chronic pain. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
DOI:10.1016/j.pain.2010.06.020      PMID:20619969      URL    
[本文引用:1]
[12] WENG X,SMITH T,SATHISH J,et al.Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current(Ih) in C- but not Adelta- nociceptors[J]. Pain, 2012, 153(4): 900-914.
Inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive (damage-sensing) dorsal root ganglion (DRG) neurons innervating inflamed tissue. However, most of the evidence for this is derived from experiments using acute inflammatory states. Herein, we used several approaches to examine the impact of chronic or persistent inflammation on the excitability of nociceptive DRG neurons and on their expression of I-h and the underlying hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which regulate neuronal excitability. Using in vivo intracellular recordings of somatic action potentials from L4/L5 DRG neurons in normal rats and rats with hindlimb inflammation induced by complete Freund's adjuvant (CFA), we demonstrate increased excitability of C- but not A delta-nociceptors, 5 to 7 days after CFA. This included an afterdischarge response to noxious pinch, which may contribute to inflammatory mechanohyperalgesia, and increased incidence of spontaneous activity (SA) and decreased electrical thresholds, which are likely to contribute to spontaneous pain and nociceptor sensitization, respectively. We also show, using voltage clamp in vivo, immunohistochemistry and behavioral assays that (1) the inflammation-induced nociceptor hyperexcitability is associated, in C- but not A delta-nociceptors, with increases in the mean I-h amplitude/density and in the proportion of I-h expressing neurons, (2) increased proportion of small DRG neurons (mainly IB4-negative) expressing HCN2 but not HCN1 or HCN3 channel protein, (3) increased HCN2- immunoreactivity in the spinal dorsal horn, and (4) attenuation of inflammatory mechanoallodynia with the selective I-h antagonist, ZD7288. Taken together, the findings suggest that C- but not A delta-nociceptors sustain chronic inflammatory pain and that I-h/HCN2 channels contribute to inflammation-induced C-nociceptor hyperexcitability. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
DOI:10.1016/j.pain.2012.01.019      Magsci    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
右美托咪定,盐酸
疼痛,神经病理性
异常放电
背根神经节

Dexmedetomidine, hydrochl...
Pain, neuropathic
Ectopic discharge
Dorsal root ganglion

作者
杨颖聪
刘康
周芳
孟庆涛
夏中元

YANG Yingcong
LIU Kang
ZHOU Fang
MENG Qingtao
XIA Zhongyuan