中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2017, 36(8): 847-852
doi: 10.3870/j.issn.1004-0781.2017.08.002
淫羊藿苷对肺动脉高压模型大鼠部分血管活性物质的影响*
Effects of Icariin on Partial Vasoactive Substances in Monocrotaline-induced Pulmonary Arterial Hypertension Rat Model
李利生1,, 罗云梅1, 刘娟2, 付晓霞1, 杨丹莉1, 谢笑龙1

摘要:

目的 探讨淫羊藿苷(ICA)对野百合碱(MCT)诱导的的肺动脉高压(PAH)大鼠模型部分血管活性物质的影响,以进一步明确ICA抗PAH的作用机制。方法 将60只雄性SD大鼠随机分为正常对照组、模型对照组和ICA小、中、大(20,40,80 mg·kg-1·d-1)剂量组,每组12只。除正常对照组外,其他组大鼠皮下注射MCT(50 mg·kg-1·d-1)复制PAH模型,1周后按分组灌胃给药,连续3周。导管法测定平均肺动脉压(mPAP),分离右心室并称质量,计算右心室肥厚指数(RVHI),苏木精-伊红(HE)染色观察肺小动脉病理改变并计算血管壁面积占血管截面积的百分比。酶联免疫吸附测定(ELISA)法检测血清血管紧张素Ⅱ(AngⅡ)、内皮素(ET)、前列腺素F(PGF)、血栓素(TXA2)和前列环素(PGI2)含量。Real time RT-PCR检测肺组织中血管紧张素转化酶(ACE)、环氧化酶2(COX-2)和TXA2合酶(TXAS)mRNA表达的变化。Western blotting检测肺组织中ACE、COX-2和TXAS蛋白含量。结果 与正常对照组相比,模型对照组大鼠mPAP[(48.5±5.2) mmHg]和RVHI(33.3±3.8)%显著增高,肺小动脉管壁增厚,管腔狭窄,重构明显。血清中AngⅡ、PGF和TXA2含量显著增高,ET和PGI2未见明显改变。ACE、COX-2和TXAS 基因表达上调。经ICA(20,40,80 mg·kg-1·d-1)处理后,mPAP、RVHI和肺小动脉重构均有改善,其中ICA(40,80 mg·kg-1·d-1)改善显著。ICA可抑制ACE、COX-2和TXAS 基因表达,降低血清AngⅡ、ET、PGF、TXA2和PGI2含量。结论 ICA可降低PAH模型大鼠血清中AngⅡ、ET、PGI2、TXA2和PGF的含量,可能是ICA抗PAH的机制之一。

关键词: 淫羊藿苷 ; 肺动脉高压 ; 血管紧张素Ⅱ ; 前列腺素F2α ; 内皮素 ; 血栓素 ; 前列环素

Abstract:

Objective To investigate the effects of icariin (ICA) on partial vasoactive substances in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Methods Sixty male SD rats were randomly divided into five groups:normal control group,model control group,ICA low-,middle- and high-dose(20,40,80 mg·kg-1·d-1) group,12 rats in each group.Except for normal control group, the rats were injected with MCT (50 mg·kg-1·d-1) to establish PAH model.After 1 week MCT-injection,ICA was given by intragastric administration for 3 weeks according to different groups.Mean pulmonary artery pressure (mPAP) was recorded through catheter connected with Power Lab system.Except for normal control group, the right ventricular hypertrophy index (RVHI) was calculated using formula:right ventricle weight/the weight of left ventricle with septum×100%.The morphology of lung artery was assessed by HE staining.Concentration of angiotensinⅡ(AngⅡ),endothelin (ET),prostaglandine F (PGF),thromboxane A2(TXA2) and prostacyclin (PGI2) in serum was measured by ELISA kit assay.The protein levels of angiotensin converting enzyme (ACE),cyclooxygenase-2 (COX-2) and thromboxane A2 synthetase (TXAS) were analyzed by Western blotting,expression of ACE,COX-2 and TXAS mRNA was measured by real time RT-PCR. Results Compared with the normal control group,mPAP [(48.5±5.2) mmHg] and RVHI (33.3±3.8)%in model control group were significantly increased (P<0.05),the morphology revealed there was obvious artery remodeling at distal artery,the contents of AngⅡ,PGF,TXA2 in serum were elevated,and ACE,COX-2 and TXAS gene expression was up-regulated in rats treated with MCT.ICA (40,80 mg·kg-1·d-1) treatment significantly attenuated mPAP,RVHI and pulmonary artery remodeling (P<0.05),and decreased the contents of serum AngⅡ,ET,PGF,TXA2,and PGI2,and inhibited the gene expression of ACE,COX-2 and TXAS. Conclusion ICA decreases the contents of AngII,ET,PGI2,PGF and TXA2 in the serum of MCT-induced PAH rats,which may be one of the mechanisms underlying ICA inhibiting PAH.

Key words: Icariin ; Pulmonary arterial hypertension ; AngiotensinⅡ ; Prostaglandin F2α ; Endothelin ; Thromboxane A2 ; Prostacyclin

肺动脉高压(pulmonary arterial hypertension,PAH)是一组以平均肺动脉压(mean pulmonary artery pressure,mPAP)进行性升高、肺小动脉重构和原位血栓形成为共同特征的临床综合征,可由多种心、肺或肺血管疾病引起,病程常呈进行性发展,最终导致肺功能受损和右心衰竭[1-2]。PAH发病机制复杂,涉及炎症、氧化损伤、基因突变等多个方面,其中缩血管物质如血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)、内皮素(endothelin,ET)、前列腺素F(PGF)、血栓素(thromboxane,TXA2)等与扩血管物质如前列环素(prostacyclin,PGI2)等平衡失调备受关注[3-6]。淫羊藿苷(icariin,ICA)是我国传统中药淫羊藿的主要有效成分之一,研究发现ICA具有心血管保护、抗老年痴呆、抗肿瘤、调节免疫和改善骨质疏松等多种药理活性[7-8]。有证据表明ICA具有多种抗PAH药物的药理活性如扩张血管、抑制磷酸二酯酶-5、促进NO生成、抗炎等[8]。笔者前期研究发现ICA对MCT诱导的PAH具有较好的保护作用[9],但其作用机制仍待进一步阐明。笔者在本研究着重观察ICA对野百合碱(monocrotaline,MCT)诱导的大鼠PAH模型部分血管活性物质的影响。

1 材料与方法
1.1 实验动物

SD大鼠60只,♂,体质量200~250 g,SPF级,购自中国人民解放军第三军医大学大坪医院实验动物中心[动物生产许可证号:SCXK(渝)2012-0005],IVC 系统饲养[实验动物使用许可证号:SYXK(黔):2011-004],自由进食进水。

1.2 试剂

ICA购自南京泽朗医药科技有限公司(HLPC鉴定,含量>97%),0.9%氯化钠溶液溶解至所需浓度MCT购于美国Sigma公司,AngⅡ、ET、PGF、PGI2和TXA2酶联免疫分析试剂盒(美国R&D systems)。总蛋白提取试剂盒(北京普利莱基因技术有限公司),Mouse Anti-β-actin、辣根过氧化物酶(horseradish peroxidase,HRP)标记山羊抗兔IgG 、HRP标记山羊抗小鼠IgG、二辛可酸(bicinchoninic acid,BCA)蛋白定量试剂盒(上海碧云天生物科技有限公司),兔血栓素合成酶抗体(thromboxane synthase,TXAS)和兔血管紧张素转换酶抗体(北京博奥森生物技术有限公司),兔抗环氧化酶-2(cyclooxygenase-2,COX-2,美国,Abcam公司),增强化学发光法(enhanced chemiluminescence,ECL)免疫印迹化学发光试剂(上海七海生物科技有限公司)。RNA提取纯化试剂盒、RT-聚合酶链反应(polymerase chain reaction,PCR)试剂盒、β-actin、COX-2、TXAS引物(大连宝生物工程有限公司)。

1.3 仪器

PowerLab八导生理记录仪(澳大利亚ADInstrument公司),Multiskan Spectrum全波长酶标仪(芬兰Thermo公司),显微镜及Cellsens图像分析系统(日本Olympus公司)。逆转录仪(德国Eppendorf公司),Real-Time RT-PCR扩增仪(美国Bio-Rad公司)。

1.4 分组及给药方法

将大鼠适应性喂养1周后随机分为正常对照组、模型对照组和ICA小、中、大(20,40,80 mg·kg-1·d-1)剂量组,每组12只。除正常对照组给予等体积0.9%氯化钠溶液外,其他组动物皮下注射MCT(50 mg·kg-1)制备PAH模型,mPAP>25 mmHg者视为造模成功。模型制备1周后,按分组灌胃给予ICA,0.1 mL·kg-1,连续3周,正常对照组和模型对照组给予等体积0.9%氯化钠溶液,期间隔天称定体质量以便调整给药量。

1.5 mPAP、RVHI测定及标本收集

术前禁食过夜,末次给药2 h后腹腔注射戊巴比妥钠(50 mg·kg-1)麻醉,行肺动脉插管术,根据压力变化判断导管位置,记录mPAP。游离心脏,去除血管和心耳后分离右心室壁,称量右心室壁和其余部分质量,计算二者的比值,即右心室肥厚指数(right ventricular hypertrophy index,RVHI)。收集肺组织和血清,-80 ℃冻存备用,4%多聚甲醛固定用于肺小动脉形态学检测。

1.6 酶联免疫吸附测定(enzyme-linked immuno-sorbent assay,ELISA)法测定血清中AngⅡ、ET、TXA2和PGI2含量

血清样本未经稀释,检测过程严格按试剂盒操作说明执行,根据标准曲线方程计算AngⅡ、ET、TXA2和PGI2的含量。

1.7 肺小动脉形态学检测

肺组织经4%多聚甲醛固定、石蜡包埋、切片、苏木精-伊红(HE)染色,显微镜观察肺小动脉形态学改变并摄相,使用Cellsens图像分析软件测量血管截面积和血管腔面积,根据公式“(血管截面积-血管腔面积)/血管截面积×100%”计算肺小动脉管壁面积占血管截面积的百分比,用“管壁面积(wall area,WA)%”表示。

1.8 Western blotting检测肺组织ACE、COX-2和TXAS蛋白含量

取适量肺组织匀浆后经总蛋白提取试剂盒提取总蛋白,热变性(95 ℃,10 min),BCA测定蛋白浓度,上样量为20 μg蛋白/泳道,用12%SDS-聚丙烯酰胺凝胶电泳后,将蛋白质转至聚偏二氟乙烯膜(PVDF,0.45 μm),5%脱脂奶粉封闭2 h,一抗(ACE,1:200;TXAS,1:200;COX-2,1:1 000; β-actin,1:1 000)4 ℃孵育过夜。加入二抗(兔抗小鼠,1:1 000;羊抗兔,1:1 000)室温下孵育2 h,ECL发光液孵育2 min,经凝胶成像系统曝光成像,经Image J软件测定条带灰度值,计算目的蛋白与β-actin条带灰度值之比,即为目的蛋白的相对表达量。

1.9 RT-PCR测定肺组织中ACE、COX-2和TXAS mRNA水平

采用Trizol法提取RNA并纯化,以RNA为模板逆转录获得cDNA。继而以cDNA为模板,选择目的基因的特异性引物,经Real time PCR进行扩增,总反应体积为15 μL,反应条件为:95 ℃,8.5 min®95 ℃,15 s;58 ℃,1 min;循环45次。引物信息见表1。目的基因的相对表达量以“目的基因/内参基因”表示。

表1 ACE、COX-2和TXAS引物信息
Tab.1 Primer information of ACE, COX-2 and TXAS
试剂 基因银行
登录号
引物序列 扩增长度/
bp
ACE NM_012544.1 Forward primer(5'-3')TGCCTCAGCCTGGG 99
ACTTCTA
Reverse primer(5'-3')CCCATTTCGTGGTG
GGCTA
COX-2 NM_017232.3 Forward primer(5'-3')GCTGGCCTGGTAC 88
TCAGTAGG
Reverse primer(5'-3')CGAGGCCACTGAT
ACCTATTGC
TXAS NM_012687.1 Forward primer(5'-3')TGAGGATGTACCC 84
ACCAGCTTTC
Reverse primer(5'-3')AACCTGCAGGGAT
GTGCTGTC
β-actin NM_031144.3 Forward primer(5'-3')TGACAGGATGCA 104
GAAGGAGA
Reverse primer(5'-3')TAGAGCCACCAAT
CCACACA

表1 ACE、COX-2和TXAS引物信息

Tab.1 Primer information of ACE, COX-2 and TXAS

1.10 统计学方法

采用SPSS19.0版统计软件,全部数据以均数±标准差( x ¯ ±s)表示,进行单因素方差分析,两两比较方差齐采用Least Significance Difference(LSD)法,方差不齐采用Games-Howell 法,以P<0.05为差异有统计学意义。

2 结果
2.1 5组大鼠一般情况及mPAP和RVHI的比较

模型对照组一般情况差,体质量减轻,唇部发绀,呼吸浅快,并有7只大鼠先后死亡,mPAP增高达(48.5±5.2)mmHg,显著高于正常对照组(P<0.05),伴有RVHI升高。ICA治疗组大鼠一般情况好转,体质量高于模型对照组,动物死亡数有所降低,ICA小剂量组死亡5只,ICA中、大剂量组各死亡4只。mPAP和RVHI均有所改善,ICA中、大剂量组与模型对照组比较,差异有统计学意义(P<0.05)。见表2。

表2 5组大鼠mPAP和RVHI的比较
Tab.2 Comparison of mPAP and RVHI among five groups of rats x¯±s
组别 剂量/
(mg·kg-1·d-1)
小鼠/
mPAP/
mmHg
RVHI/
%
正常对照组 12 16.4±2.5 16.1±3.1
模型对照组 5 48.5±5.2*1 33.3±3.8*1
ICA
小剂量组 20 7 39.6±6.1 29.1±6.0
中剂量组 40 8 32.5±6.0*2 26.4±5.9*2
大剂量组 60 8 32.0±5.1*2 28.0±2.4*2
F 41.723 14.363

Compared with normal control group,*1P<0.05;compared with model control group,*2P<0.05

与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

表2 5组大鼠mPAP和RVHI的比较

Tab.2 Comparison of mPAP and RVHI among five groups of rats x¯±s

2.2 ICA对MCT诱导的PAH大鼠肺小动脉组织形态学的影响

模型对照组肺小动脉重构明显,表现为内皮细胞连续性差,向心或偏心性内膜增厚,中膜平滑肌细胞增殖明显、排列紊乱,管腔狭窄且不规则,给予ICA治疗后血管壁病理改变明显好转(图1),定量分析结果表明模型对照组WA%显著高于正常对照组,ICA在中剂量组和大剂量组水平可显著降低WA%(P<0.05)。见图2。

图1 5组大鼠肺小动脉组织形态学(HE染色,×200)
A.正常对照组;B.模型对照组;C.ICA小剂量组;D.ICA中剂量组;E.ICA大剂量组

Fig.1 Histomorphology of pulmonary arterioles among five groups of rats(HE staining,×200)
A.normal control group; B.model control group;C.low-dose ICA group;D.medium-dose ICA group;E.high-dose ICA group

图2 5组大鼠WA%值的比较
与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

Fig.2 Comparison of WA% among five groups of rats
Compared with normal control group, *1P<0.05; compared with model control group, *2P<0.05

2.3 5组大鼠血清中AngⅡ、ET、TXA2、PGF和PGI2含量的比较

模型对照组大鼠血清中AngⅡ、PGF和TXA2显著增高,ET和PGI2未见明显改变。ICA小、中、大剂量组血清中ET、PGF、TXA2和PGI2含量降低 (P<0.05),但未见明显的量效关系,而AngⅡ含量显著降低仅见于ICA大剂量组。见表3。

表3 5组大鼠血清中AngⅡ、ET、PGF、TXA2和PGI2含量的比较
Tab.3 Comparison of the serum content of AngⅡ, ET, PGF, TXA2 and PGI2 among five groups of rats ng·L-1,x¯±s
组别 剂量/
(mg·kg-1·d-1)
小鼠/
AngⅡ ET PGF TXA2 PGI2
正常对照组 12 115.3±21.9 52.2±3.2 75.1±4.8 281.8±20.3 203.7±10.2
模型对照组 5 154.5±7.0 *1 53.4±3.3 103.8±12.3 *1 307.4±8.0 *1 214.7±16.5
ICA
小剂量组 20 7 140.6±45.7 47.0±4.3*2 80.8±7.6*2 248.0±14.5*2 179.1±17.5*2
中剂量组 40 8 154.5±18.7 48.2±2.8*2 87.9±4.2*2 269.4±10.6*2 182.3±14.6*2
大剂量组 80 8 133.9±11.3*2 45.4±3.4*2 78.5±3.2*2 228.4±14.0*2 166.0±12.0*2
F 2.162 4.892 12.431 25.014 9.308

Compared with normal control group,*1P<0.05;compared with model control group,*2P<0.05

与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

表3 5组大鼠血清中AngⅡ、ET、PGF、TXA2和PGI2含量的比较

Tab.3 Comparison of the serum content of AngⅡ, ET, PGF, TXA2 and PGI2 among five groups of rats ng·L-1,x¯±s

2.4 5组大鼠肺组织中ACE、COX-2和TXAS蛋白及mRNA含量的比较

图3和表4所示,模型对照组ACE、COX-2和TXAS蛋白及mRNA含量均显著增高,给予ICA治疗后的PAH大鼠肺组织中ACE、COX-2和TXAS蛋白及mRNA含量均不同程度的降低,尽管与模型对照组比较,ICA小剂量组及中剂量组差异无统计学意义,但ICA大剂量组ACE、COX-2和TXAS蛋白及mRNA含量显著降低(P<0.05)。

图3 5组大鼠肺组织ACE、COX-2和TXAS蛋白质含量的比较(x¯±s,n=5)
与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

Fig.3 Comparison of the protein content of ACE, COX-2 and TXAS in lung tissue among five groups of rats(x¯±s,n=5)
Compared with normal control group, *1P<0.05;compared with model control group,*2P<0.05

表4 5组大鼠肺组织COX-2、TXAS和ACE mRNA 表达的比较
Tab.4 Comparison of the mRNA expression of ACE, COX-2 and TXAS in lung tissue among five groups of rats x¯±s
组别 剂量/
(mg·kg-1·d-1)
小鼠/
COX-2/
β-actin
TXAS/
β-actin
ACE/
β-actin
正常对照组 12 458.9±86.7 202.8±9.7 222.9±14.1
模型对照组 5 743.6±70.6*1 423.3±89.2*1 522.1±89.8*1
ICA
小剂量组 20 7 490.9±129.0 230.1±32.7*2 454.8±99.5
中剂量组 40 8 338.5±82.3*2 135.8±9.4*2 199.4±26.2*2
大剂量组 80 8 237.6±75.0*2 83.1±24.1*2 248.1±45.0*2
F 2.162 8.653 2.722

Compared with normal control group, *1P<0.05;compared with model control group,*2P<0.05

与正常对照组比较,*1P<0.05;与模型对照组比较,*2P<0.05

表4 5组大鼠肺组织COX-2、TXAS和ACE mRNA 表达的比较

Tab.4 Comparison of the mRNA expression of ACE, COX-2 and TXAS in lung tissue among five groups of rats x¯±s

3 讨论

PAH发病机制研究和治疗药物研发等均有赖于理想的动物模型,LALICH等[10]首先复制成功MCT诱导的PAH模型,该模型具有易复制、成模率高,病程进行性发展,病理改变2~3周达高峰等优点而被沿用至今,已有50多年的历史[11]。笔者采用MCT(50 mg·kg-1·d-1)皮下注射复制大鼠PAH模型,4周后模型对照组动物一般情况差,mPAP升高达(48.5±5.2)mmHg,伴有右心室肥厚和肺动脉重构,呈现较为典型的PAH病理改变,死亡率高达58.3%。高死亡率导致样本量减少,部分数据标准差偏大。本研究选择模型复制后2~4周即疾病进展期作为ICA的治疗时间窗,采用灌胃方式连续治疗3周,发现ICA中剂量组和大剂量组治疗后PAH大鼠一般情况好转,死亡率降低,mPAP和右心室肥厚显著改善,肺血管重构明显减轻,但ICA小剂量组未见显著差异,表明该剂量已接近最小有效量,与课题组前期研究完全一致[9,12],再次表明ICA具有抗MCT诱导的PAH作用。

体液调节是肺循环血流量和血压调节的重要方式。在MCT-PAH模型,MCT代谢产物选择性的损伤肺血管内皮细胞,导致内皮功能紊乱和血管重构,缩血管和扩血管血管活性物质的失衡,不仅使血管张力调节紊乱,mPAP异常升高,而且促进了血管重构和血栓形成,使PAH病情进一步加重[13]。AngⅡ除收缩血管促进醛甾酮分泌等作用外,还可诱导血管平滑肌细胞增殖[14]。本实验发现MCT-PAH模型大鼠ACE基因表达上调,血清AngⅡ含量升高,表明该模型RAAS活性较高。ICA可抑制ACE基因表达,降低AngⅡ水平,但需较大的给药剂量。ET是目前已知的缩血管作用最强的物质,其受体拮抗药如波生坦是临床治疗PAH的重要药物[15]。尽管本实验中模型对照组与正常对照组动物血清中ET含量相当,但ICA给药3周后3个剂量组ET水平明显降低,无剂量依赖性,推测该效应非ICA的直接作用。

花生四烯酸被COX催化生成前列腺素类(PGs)和血栓素类活性物质,与早期PAH有关[16]。TXA2和PGF具有收缩血管作用,前者还可促进VSMCs增殖和血小板聚集,相反,PGI2具有松弛小动脉、抑制血小板聚集功能[17]。COX是体内PGs合成的关键酶,其中诱导型即COX-2主要在病理条件下发挥作用,TXAS是TXA2合成的限速酶[18]。笔者研究发现PAH模型大鼠血清中PGF和TXA2含量增高,而PGI2无明显改变,ICA可降低PGF和TXA2产生有益于PAH缓解的药理作用,但遗憾的是ICA也降低了PGI2含量,对扩张血管、抑制血小板聚集不利。ICA抑制COX-2和TXAS表达可能导致是PGF、TXA2和PGI2下降的原因。

综上所述,ICA可降低MCT诱导的PAH大鼠血清中AngⅡ、ET、PGI2、PGF和TXA2的含量,可能是ICA抗PAH的机制之一。

The authors have declared that no competing interests exist.

参考文献

[1] 桑葵,周英,李明霞.缺氧性肺动脉高压新生大鼠肺血管重塑的研究[J].中国当代儿科杂志,2012,14(3):210-214.
目的:通过建立新生大鼠缺氧性肺动脉高压(hypoxia-induced pulmonary hypertension,HPH)模型,探讨HPH新生大鼠发病过程中肺血管重塑的变化。方法:将96只新生Wistar大鼠随机分为2组:缺氧组和常氧对照组,缺氧组建立新生大鼠HPH模型。分别于缺氧3、5、7、10、14、21 d 取缺氧组及对照组同日龄新生大鼠各8只测定其平均肺动脉压(mean pulmonary arteria pressure,mPAP)、右心室肥大指数(right ventricle hypertrophy index,RVHI),血管重塑指标MT%、MA%,观察肺血管超微结构。结果:缺氧组大鼠在缺氧3、5、7、10、14、21 d mPAP持续上升,明显高于对照组(P<0.05);随着缺氧时间的延长,差异更为显著。缺氧7 d后MT%、MA%、RVHI明显高于对照组(P<0.05);随着缺氧时间的延长,差异同样更为显著。透射电镜显示,缺氧7 d后大鼠肺小动脉内膜增厚,内皮细胞增生、变性,细胞器增多;细胞外基质见胶原纤维沉积;出现肺血管重塑改变。结论:新生大鼠缺氧3~5 d肺动脉压力增高,处于肺血管痉挛阶段;缺氧7 d后肺血管出现重塑,右心室肥厚,出现不可逆变化;随着缺氧时间延长,上述变化加剧。
Magsci    
[本文引用:1]
[2] TAMURA Y,CHANNICK R N.New paradigm for pulmonary arterial hypertension treatment[J].Curr Opin Pulm Med,2016,22(5):429-433.
Abstract PURPOSE OF REVIEW: Pulmonary arterial hypertension (PAH) was previously considered a uniformly fatal disease, with patients succumbing to right heart failure and death at an average of 3 years after diagnosis. The past 20 years, however, have seen the development of numerous targeted therapies that have changed the natural history of PAH. As more pharmacologic agents have been approved and utilized, further advances in the design of and endpoints for clinical trials. This study will review some of these notable developments. RECENT FINDINGS: The successful design and completion of long-term, event-driven trials is exemplified in three recent studies: SERAPHIN, GRIPHON, and AMBITION. SERAPHIN and GRIPHON evaluated the newer agents, macitentan, an endothelin receptor antagonist, and selexipag, a prostacyclin receptor agonist, respectively. Both trials were large-scale studies that, in addition to showing marked effect on the primary endpoint of morbidity/mortality, clearly demonstrated that assessment of long-term effects of PAH therapies is feasible for new compounds. The AMBITION study evaluated a treatment strategy, namely up-front combination therapy with tadalafil and ambrisentan compared with monotherapy and showed the combination approach to be superior at decreasing the likelihood of clinical failure. SUMMARY: The evolution of clinical trials in PAH has direct implications for care of these patients. The short and long-term benefits of combination regimens suggest that the multidrug approach to PAH should, in fact, be standard of care for this disease.
DOI:10.1097/MCP.0000000000000308      PMID:27434819      URL    
[本文引用:1]
[3] ARCHER S L,WEIR E K,WILKINS M R.Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies[J].Circulation,2010,121(18):2045-2066.
University of Chicago, IL 60637, USA. sarcher@medicine.bsd.uchicago.edu
DOI:10.1161/CIRCULATIONAHA.108.847707      PMID:20458021      URL    
[本文引用:1]
[4] 王建荣,周英,桑葵,.缺氧性肺动脉高压新生大鼠肺血管重塑与肺血管HIF-1α、ET-1、iNOS表达的相关性研究[J].中国当代儿科杂志,2013,15(2):138-144.
目的了解缺氧性肺动脉高压(HPH)新生大鼠肺血管重塑与肺血管HIF-1α、ET-1、iNOS表达的相关性。方法建立HPH新生大鼠模型,检测平均肺动脉压力(mPAP);并计算肺小动脉中层壁厚占肺小动脉的外径百分比(MT%)、肺小动脉管壁中层横截面积占肺小动脉总横截面积的百分比(MA%)作为肺血管重塑指标;免疫组化法检测新生大鼠肺组织中HIF-1α、ET-1、iNOS反应强度及mRNA表达;进行肺血管重塑与HIF-1α、ET-1、iNOS mRNA相关性分析。结果缺氧3、5、7、10、14、21 d,新生大鼠mPAP持续增高,与对照组相比差异有统计学意义(P〈0.05)。缺氧7 d后MT%、MA%明显高于对照组(P〈0.05)。肺组织中HIF-1α表达在缺氧3、5、7、10 d时显著高于对照组(P〈0.05),其mRNA表达在3、5、7 d高于对照组(P〈0.05);ET-1表达在缺氧3、5、7 d时显著高于对照组(P〈0.05),其mRNA表达在缺氧3 d时高于对照组(P〈0.05);iNOS蛋白及mRNA表达在缺氧3、5、7 d时均显著高于对照组(P〈0.05)。MT%和MA%与HIF-1αmRNA呈正相关(r分别为0.835、0.850,P〈0.05)。结论新生大鼠缺氧7 d后肺血管出现重塑;HIF-1α、ET-1及iNOS共同参与了新生大鼠HPH的发生及发展。
DOI:10.7499/j.issn.1008-8830.2013.02.016      Magsci     URL    
[本文引用:0]
[5] AKAGI S,NAKAMURA K,MATSUBARA H,et al.Prostag-landin I2 induces apoptosis via upregulation of Fas ligand in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension[J].Int J Card,2013,165(3):499-505.
Pulmonary vascular remodeling with idiopathic pulmonary arterial hypertension (IPAH) is associated with impaired apoptosis of pulmonary artery smooth muscle cells (PASMCs). We have reported that high-dose prostaglandin I2 (PGI2) therapy markedly improved hemodynamics in IPAH patients. The therapy is thought to reverse vascular remodeling, though the mechanism is unclear. The aim of this study is to assess proapoptotic effects of PGI2 on PASMCs obtained from IPAH patients.We investigated proapoptotic effects of PGI2 in PAH-PASMCs by TUNEL assays, caspase-3,-7 assays and transmission electron microscopy. We examined the expression of Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, in PAH-PASMCs. We measured the serum FasL levels in IPAH patients treated with PGI2.TUNEL-positive, caspase-3, 7-active cells and fragmentation of the nucleus were detected in PAH-PASMCs treated with PGI2. The percentage of apoptotic cells induced by PGI2 at a high concentration was higher than that induced by PGI2 at a low concentration. PCR-array analysis revealed that PGI2 upregulated the FasL gene in PAH-PASMCs, and we measured the FasL expression by quantitative RT-PCR and Western blotting. PGI2 significantly increased the mRNA level of FasL by 3.98 fold and the protein level of FasL by 1.70 fold. An IP receptor antagonist inhibited the induction of apoptosis, elevation of cyclic AMP and upregulation of FasL by PGI2. Serum FasL level had a significant positive correlation with PGI2 dose in IPAH patients treated with PGI2.PGI2 has proapoptotic effects on PAH-PASMCs via the IP receptor and upregulation of FasL.
DOI:10.1016/j.ijcard.2011.09.004      PMID:21955608      URL    
[本文引用:0]
[6] FAN C,KATSUYAMA M,WEI H,et al.Molecular mechan-isms underlying PGF2 alpha-induced hypertrophy of vascular smooth muscle cells[J].Yakugaku Zasshi J Pharm Soc Japan,2010,130(2):211-214.
[本文引用:1]
[7] LI L,SUN J,XU C,et al.Icariin ameliorates cigarette smoke induced inflammatory responses via suppression of NF-κB and modulation of GR in vivo and in vitro[J].PLoS One,2014,9(8):e102345.
Purpose To investigate the effects of icariin, a major constituent of flavonoids isolated from the herb Epimedium, on cigarette smoke (CS) induced inflammatory responses in vivo and in vitro. Methods In vivo, BALB/c mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with icariin (25, 50 and 100 mg/kg) or dexamethasone (1 mg/kg). In vitro, A549 cells were incubated with icariin (10, 50 and 100 08M) followed by treatments with CSE (2.5%). Results We found that icariin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9 in both the serum and BALF of CS-exposed mice and decreasing production of TNF-α and IL-8 in the supernatant of CSE-exposed A549 cells. Icariin also showed properties in inhibiting the phosphorylation of NF-κB p65 protein and blocking the degradation of IΚB-α protein. Further studies revealed that icariin administration markedly restore CS-reduced GR protein and mRNA expression, which might subsequently contribute to the attenuation of CS-induced respiratory inflammatory response. Conclusion Together these results suggest that icariin has anti-inflammatory effects in cigarette smoke induced inflammatory models in vivo and in vitro, possibly achieved by suppressing NF-κB activation and modulating GR protein expression.
DOI:10.1371/journal.pone.0102345      URL    
[本文引用:1]
[8] KOIZUMI H,YU J,HASHIMOTO R,et al.Involvement of androgen receptor in nitric oxide production induced by icariin in human umbilical vein endothelial cells[J].FEBS Lett,2010,584(11):2440-2444.
Icariin, a flavonoid isolated from Epimedii herba, stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177, Akt (Ser473) and ERK1/2 (Thr202/Tyr204). The icariin-induced eNOS phosphorylation was abolished by an androgen receptor (AR) antagonist, nilutamide in human umbilical vein endothelial cells (HUVECs). Furthermore, it was also reduced in the cells transfected with small interfering RNA in which the expression of AR was broken down. The icariin-induced eNOS phosphorylation was inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. These data suggest that icariin stimulates release of NO by AR-dependent activation of eNOS in HUVECs. PI3K/Akt and MAPK-ERK kinase (MEK)/ERK1/2 pathways were involved in the phosphorylation of eNOS by icariin.
DOI:10.1016/j.febslet.2010.04.049      PMID:20416296      URL    
[本文引用:2]
[9] LI L S,LUO Y M,LIU J,et al.Icariin inhibits pulmonary hypertension induced by monocrotaline through enhance-ment of NO/cGMP signaling pathway in rats[J].Evid Based Compl Alt Med,2016,4:1-10.
It has been reported that icariin (ICA) increased contents of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by improving expression of endothelial nitric oxide synthase (eNOS) and inhibition of phosphodiesterase type 5 (PDE5). In addition, dysfunction of the NO/cGMP pathway may play a crucial role in the pathogenesis of pulmonary hypertension (PH). In this study, the potential protective effects of ICA on PH induced by monocrotaline (MCT, 50???mg/kg) singly subcutaneous injection were investigated and the possible mechanisms involved in NO/cGMP pathway were explored in male Sprague Dawley rats. The results showed that ICA (20, 40, and 80???mg/kg/d) treatment by intragastric administration could significantly ameliorate PH and upregulate the expression of eNOS gene and downregulate the expression of PDE5 gene in MCT-treated rats. Both ICA (40???mg/kg/d) and L-arginine (200???mg/kg/d), a precursor of NO as positive control, notably increased the contents of NO and cGMP in lung tissue homogenate, which were inversed by treatment with G N -nitro-L-arginine-methyl ester (L-NAME), a NOS inhibitor, and L-NAME-treatment could also inhibit the protective effects of ICA (40???mg/kg/d) on mean pulmonary artery pressure and artery remodeling and tends to inhibit right ventricle hypertrophy index. In summary, ICA is effective in protecting against MCT-induced PH in rats through enhancement of NO/cGMP signaling pathway in rats.
DOI:10.1155/2016/7915415      PMID:4904099      URL    
[本文引用:2]
[10] LALICH J J,EHRHART L A.Monocrotaline-induced pulm-onary arteritis in rats[J].J Atheroscler Res,1962,2(6):482-492.
[本文引用:1]
[11] CROSSWHITE P,SUN Z.Molecular mechanisms of pulmo-nary arterial remodeling[J].2014,20(1):191-201.
[本文引用:1]
[12] 李利生,刘娟,罗云梅,.淫羊藿苷对野百合碱诱导的肺动脉高压模型大鼠血流动力学的影响[J].遵义医学院学报,2016,39(3):229-232.
[本文引用:1]
[13] 李波,何巍.肺动脉高压动物模型的理论研究及其制备特点[J].中国组织工程研究与临床康复,2010,14(11):2039-2042.
背景:建立肺动脉高压动物模型,对其深入研究有助于推动临床对肺动脉高压诊治水平的不断提高.目的:总结 与探讨各种肺动脉动物模型的制备、病理生理学特点以及对临床肺动脉高压的模拟性.方法:应用计算机检索PubMed数据库1975-01/2009-09 期间相关文章,检索词为"pulmonary hypertension、animal model",同时检索中国期刊全文数据1990-01/2009-09期间的相关文章,检索词为"肺动脉高压,动物模型". 纳入外科手术制作肺动脉高压动物模型的研究、药物注射制作肺动脉高压动物模型的研究、有新生内膜形成的肺动脉高压动物模型研究、肺动脉高压动物模型与临床 肺动脉高压患者的病理生理对比的研究、肺动脉高压动物模型的药物干预研究.结果与结论:已知的肺动脉高压动物模型建立方法包括.外科手术建立分流术、野百 合碱注射、低氧吸入法等经典方法,以 及近年报道的几种有新生内膜产生的重度肺动脉高压模型.此类模型建立经过了不断地改进,为了解肺动脉高压的细胞及分子病理学机制提供了帮助,但尚不明确这 些模型能在多大程度模拟临床肺动脉高压的细胞和分子发生机制,因此仍不清楚哪类模型更能代表临床肺动脉高压的病理机制.
[本文引用:1]
[14] LIU G,HITOMI H,RAHMAN A,et al.High sodium aug-ments angiotensin Ⅱ-induced vascular smooth muscle cell proliferation through the ERK 1/2-dependent pathway[J].Hypert Res,2014,37(1):13-18.
Angiotensin II (Ang II)-induced vascular injury is exacerbated by high-salt diets. This study examined the effects of high-sodium level on Ang II-induced cell proliferation in rat vascular smooth muscle cells (VSMCs). The cells were cultured in a standard medium containing 137.565mmol65l(-1) of sodium. The high-sodium medium (14065mmol65l(-1)) contained additional sodium chloride. Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was determined by western blot analysis. Cell proliferation was evaluated by [(3)H]-thymidine incorporation. Ang II (10065nmol65l(-1)) significantly increased ERK 1/2 phosphorylation and cell proliferation in the both medium containing standard sodium and high sodium. High-sodium level augmented Ang II-induced ERK 1/2 phosphorylation and cell proliferation compared with standard sodium. Pre-treatment with candesartan (165μmol65l(-1), Ang II type 1 receptor blocker) or PD98095 (1065μmol65l(-1), ERK kinase iinhibitor) abolished the proliferative effect induced by high sodium/Ang II. Pre-treatment with 5-N,N-hexamethylene amiloride (3065μmol65l(-1), Na(+)/H(+) exchanger type 1 (NHE-1) inhibitor), but not SN-6 (1065μmol65l(-1), Na(+)/Ca(2+) exchanger inhibitor) or ouabain (165mmol65l(-1), Na(+)/K(+)-ATPase inhibitor) attenuated ERK 1/2 phosphorylation or cell proliferation. Osmotic pressure or chloride had no effect on Ang II-induced proliferative changes. High-sodium level did not affect Ang II receptor expression. Ang II increased intracellular pH via NHE-1 activation, and high-sodium level augmented the pH increase induced by Ang II. These data suggest that high-sodium level directly augments Ang II-induced VSMC proliferation through NHE-1- and ERK 1/2-dependent pathways and may offer new insights into the mechanisms of vascular remodeling by high-sodium/Ang II.
DOI:10.1038/hr.2013.108      PMID:3947370      URL    
[本文引用:1]
[15] CHESTER A H,YACOUB M H.The role of endothelin-1 in pulmonary arterial hypertension[J].Global Cardiol Sci Pract,2014,2:62-78.
Abstract Pulmonary arterial hypertension (PAH) is a rare but debilitating disease, which if left untreated rapidly progresses to right ventricular failure and eventually death. In the quest to understand the pathogenesis of this disease differences in the profile, expression and action of vasoactive substances released by the endothelium have been identified in patients with PAH. Of these, endothelin-1 (ET-1) is of particular interest since it is known to be an extremely powerful vasoconstrictor and also involved in vascular remodelling. Identification of ET-1 as a target for pharmacological intervention has lead to the discovery of a number of compounds that can block the receptors via which ET-1 mediates its effects. This review sets out the evidence in support of a role for ET-1 in the onset and progression of the disease and reviews the data from the various clinical trials of ET-1 receptor antagonists for the treatment of PAH.
DOI:10.5339/gcsp.2014.29      PMID:4220438      URL    
[本文引用:1]
[16] 杜军保,唐朝枢.肺动脉高压[M].北京:北京大学医学出版社,2010:9.
[本文引用:1]
[17] ESKILDSEN M P,HANSEN P B,STUBBE J,et al.Prostaglandin I2 and prostaglandin E2 modulate human intrarenal artery contractility through prostaglandin E2-EP4,prostacyclin-IP,and thromboxane A2-TP receptors[J].Hypertension,2014,64(3):551-556.
Cyclooxygenase inhibitors decrease renal blood flow in settings with decreased effective circulating volume. The present study examined the hypothesis that prostaglandins, prostaglandin E2 (PGE2) and prostacyclin (PGI2), induce relaxation of human intrarenal arteries through PGE2-EP and PGI2-IP receptors. Intrarenal arteries were microdissected from human nephrectomy samples (n=53, median diameter ≈362 μm, 88% viable, 76% relaxed in response to acetylcholine). Rings were suspended in myographs to record force development. In vessels with K(+)-induced tension (EC70: -log [mol/L]=1.36±0.03), PGE2 and PGI2 induced concentration-dependent relaxation (-log EC50: PGE2=7.1±0.3 and PGI2=7.7). The response to PGE2 displayed endothelium dependence and desensitization. Relaxation by PGE2 was mimicked by an EP4 receptor agonist (CAY10598, EC50=6.7±0.2). The relaxation after PGI2 was abolished by an IP receptor antagonist (BR5064, 10(-8) mol/L). Pretreatment of quiescent arteries with PGE2 for 5 minutes (10(-6) mol/L) led to a significant right shift of the concentration-response to norepinephrine (EC50 from 6.6±0.1-5.9±0.1). In intrarenal arteries with K(+)-induced tone, PGE2 and PGI2 at 10(-5) mol/L elicited increased tension. This was abolished by thromboxane receptor (TP) antagonist (S18886, 10(-6) mol/L). A TP agonist (U46619, n=6) evoked tension (EC50=8.1±0.2) that was inhibited by S18886. Polymerase chain reaction and immunoblotting showed EP4, IP, and TP receptors in intrarenal arteries. In conclusion, PGE2 and PGI2 may protect renal perfusion by activating cognate IP and EP4 receptors associated with smooth muscle cells and endothelium in human intrarenal arteries and contribute to increased renal vascular resistance at high pathological concentrations mediated by noncognate TP receptor.
DOI:10.1161/HYPERTENSIONAHA.113.03051      PMID:24914192      Magsci     URL    
[本文引用:1]
[18] 杨宝峰. 药理学[M].8版.北京:人民卫生出版社,2015:280-281.
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
淫羊藿苷
肺动脉高压
血管紧张素Ⅱ
前列腺素F2α
内皮素
血栓素
前列环素

Icariin
Pulmonary arterial hypert...
AngiotensinⅡ
Prostaglandin F2α
Endothelin
Thromboxane A2
Prostacyclin

作者
李利生
罗云梅
刘娟
付晓霞
杨丹莉
谢笑龙

LI Lisheng
LUO Yunmei
LIU Juan
FU Xiaoxia
YANG Danli
XIE Xiaolong