中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2016, 35(11): 1254-1258
doi: 10.3870/j.issn.1004-0781.2016.11.023
羟基喜树碱/GA-PEI-PLGA纳米粒的制备及其工艺优化*
Preparation and Optimization of Hydroxycamptothecin Loaded GA-PEI-PLGA Nanoparticles
梁劲康1,, 吴得天1, 胡巧红1,2,, 吴雅琼1

摘要: 目的制备包载羟基喜树碱(HCPT)的甘草次酸修饰的PEI-PLGA(GA-PEI-PLGA)纳米粒。方法采用超声乳化-减压溶剂挥发法制备HCPT/GA-PEI-PLGA纳米粒。在单因素实验基础上,选取药物/载体比、油相/水相体积比、超声时间、超声功率为考察因素,以包封率和载药量为考察指标,通过正交设计实验对载药纳米粒的制备工艺进行优化,并对其粒径及Zeta电位进行测定。结果超声乳化-减压溶剂挥发法成功制得HCPT/GA-PEI-PLGA纳米粒,其中药物/载体比对载药纳米粒制备的影响最大。优化后的处方工艺为:药物/载体比3:10、油相/水相体积比1:9、超声功率570 W、超声时间15 min。制得的载药纳米粒包封率高达(87.52±3.91)%,载药量为(20.10±4.72)%;平均粒径(218.1±3.23)nm,Zeta电位为(34.98±3.56) mV。结论超声乳化-减压溶剂挥发法适于制备HCPT/GA-PEI-PLGA纳米粒,制得的载药纳米粒包封率和载药量较高、粒径分布均匀、稳定性好。
关键词: 羟基喜树碱/GA-PEI-PLGA纳米粒 ; 正交设计实验 ; 制备工艺

Abstract:
ObjectiveTo prepare hydroxycamptothecin(HCPT)loaded glycyrrhetinic acid modified polyethyleneimine-poly(lactic-co-glycolic acid)(GA-PEI-PLGA)nanoparticles. MethodsEmulsion-solvent evaporation method was used to prepare HCPT-loaded GA-PEI-PLGA nanoparticles.Based on the single-factor experiments, drug/GA-PEI-PLGA ratio, oil phase/water phase ratio, sonication timeand power were further investigated.The formulation and process were optimized by orthogonal testingdesign using entrapment efficiency and drug loading efficiency as indexes.HCPT-loaded GA-PEI-PLGA nanoparticles'diameter and zeta potential were determined. ResultsHCPT-loaded GA-PEI-PLGA nanoparticles were successfully prepared by emulsion-solvent evaporation method.Drug/GA-PEI-PLGA ratio, in particular, had the uniform particle on the preparation of HCPT-loaded nanoparticles.The optimal process was as follows:drug/GA-PEI-PLGA ratio of 3 to10, oil phase/water phase ratio of 1 to 9, sonication power of 570 W and sonication time of 15 min.The entrapment efficiency and drug loading efficiency of HCPT-loaded GA-PEI-PLGA nanoparticles were(87.52±3.91)%and(20.10±4.72)%, respectively.The average particle size was(218.1±3.23)nm and the zeta potential was(34.98±3.56) mV. ConclusionEmulsion-solvent evaporation method was feasible for preparing HCPT-loaded GA-PEI-PLGA nanoparticles, with uniform particel size distribution, good stability, high entrapment and drug loading efficiency.
Key words: Hydroxycampothecin GA-PEI-PLGA ; Nanoparticles ; Orthogonal design test ; Preparation technology

羟基喜树碱(hydroxycampothecin,HCPT)是从喜树中提取的抗癌活性物质之一,对于膀胱癌、直肠癌、肝癌、胃癌及头颈部肿瘤等具有良好疗效[1]。α-羟基内酯环是HCPT抗癌活性的必需基团,具有完整内酯键的HCPT抑制拓扑异构酶I的活性远远高于其开环形成的羧酸盐[2],但其内酯环不稳定,在生理pH值环境中易开环形成羧酸盐。目前临床上使用的是HCPT内酯环开环的钠盐注射液,该制剂不但疗效较低,而且还可能引起出血性膀胱炎、皮炎、腹泻及呕吐等不良反应[3]。因此,寻找有效的药物传递系统来弥补HCPT自身缺陷就显得很重要。研究表明,将HCPT包载到纳米粒或胶束内不仅能够大大改善其溶解性能,而且能够保持HCPT结构的稳定,增强其抗肿瘤活性[4-5]。纳米粒作为药物载体具有许多优点,如具有靶向作用、提高药物稳定性等[6]。常见的纳米粒载体材料包括聚乳酸(poly lactic acid,PLA)、乳酸-羟基乙酸共聚物[poly (lactic-co-glycolic acid),PLGA]、壳聚糖和聚乙烯亚胺(polyethyleneimine,PEI)等。PEI是一种水溶性阳离子型聚合物,常用作基因转染载体,然而PEI作为药物递送载体最主要的问题是其细胞毒性。研究证实,经PLGA修饰后能克服PEI由于携带过量的正电荷所引起的细胞毒性及其在细胞表面上过度聚集的缺点[7],而且以PLGA为疏水链的聚合物形成的胶束还能够提供一定的疏水空间来包载如HCPT等水难溶性的药物[4]。研究表明,肝实质细胞膜上存在丰富的甘草次酸(glycyrrhetinic acid,GA)受体,GA修饰的纳米给药系统具有明显的肝靶向作用[8]。同时,GA为中药甘草的主要活性成分之一,具有明显的抗炎、抗病毒、抗肿瘤作用。由此,笔者利用PLGA与PEI形成共聚物PEI-PLGA后,再进行GA修饰,制得具有肝靶向作用的两亲性共聚物GA-PEI-PLGA。该共聚物在水中可自组装形成壳-核型纳米粒,其疏水内核可包载水难溶性的HCPT,使HCPT能富集于肝癌组织发挥其抗癌活性,并降低HCPT毒副作用。笔者在本实验中以合成得到的GA-PEI-PLGA为载体材料,通过超声乳化-减压溶剂挥发法制备包载HCPT的GA-PEI-PLGA纳米粒,通过单因素试验和正交设计试验,以包封率和载药量为评价指标对处方工艺进行优化,并对载药纳米粒的粒径和Zeta电位等性质进行测定。

1 仪器与试药
1.1 仪器

AUW220型电子天平(日本岛津公司,感量:0.01 mg);78-1磁力加热搅拌器(金坛市富华仪器有限公司);LGJ-18A型冷冻干燥机(北京四环科学仪器厂有限公司);RE-52AA旋转蒸发器(上海亚东生化仪器厂);SCIENTZ-Ⅲ超声波细胞粉碎机(宁波新芝生物科技有限公司);UV-1800紫外可见分光光度计(日本岛津公司);Delsa Nano粒度分析仪(美国贝克曼库尔特公司);透析袋(MWCO=50 000,广州市齐云生物技术有限公司)。

1.2 试药

18β-甘草次酸(GA,含量>97%,阿拉丁试剂公司);端羧基乳酸-羟基乙酸共聚物(PLGA,LA/GA=75/25,MW=30 000,济南岱罡生物工程有限公司);支化聚乙烯亚胺(bPEI,MW=25 000,Sigma试剂公司);GA-PEI-PLGA共聚物(自制,批号:20141019);羟基喜树碱(含量>98%,成都兰贝植化科技有限公司);羟基喜树碱对照品(中国食品药品检定研究院,含量>98%,批号:100526-200301);纯化水(广州屈臣氏食品饮料有限公司);其他试剂均为分析纯试剂。

2 方法与结果
2.1 分析方法的建立

2.1.1 紫外吸收波长扫描 分别称取适量HCPT对照品、HCPT原料药、HCPT/GA-PEI-PLGA纳米粒及GA-PEI-PLGA溶于甲醇中,分别在200~600 nm进行扫描,扫描结果见图1。HCPT在383.0 nm处有最大吸收峰,而GA-PEI-PLGA在此波长处无吸收。因此,选择HCPT的紫外检测波长为383.0 nm。

图1 HCPT和GA-PEI-PLGA的紫外吸收波长扫描图 A.HCPT对照品;B.HCPT原料药;C.HCPT/GA-PEI-PLGA纳米粒;D.GA-PEI-PLGA

Fig.1 UV/VIS absorption spectrum of HCPT and GA-PEI-PLGA A.HCPT control;B.HCPT sample;C.HCPT/GA-PEI-PLGA nanoparticles;D.GA-PEI-PLGA

2.1.2 HCPT标准曲线的制备 取HCPT对照品5.05 mg精密称定,用甲醇溶解并定容至100 mL。分别移取0.1,0.2,0.4,0.6,0.8,1.2,1.6和2.0 mL对照品母液置于10 mL棕色量瓶,甲醇定容后摇匀,得到系列浓度HCPT甲醇溶液,于波长383.0 nm处分别测定其吸光度(A)。以A值对浓度(C)线性回归,得标准曲线方程A=13.221C+0.144(r=0.999 9),表明HCPT在0.5~10.0 μg·mL-1范围内线性关系良好。

2.1.3 精密度 分别精密移取不同体积已知药物浓度的HCPT/GA-PEI-PLGA纳米粒溶液置于10 mL棕色量瓶,加入适量甲醇破坏纳米粒后,甲醇定容,配制低、中、高浓度(2.0,4.0,8.0 μg·mL-1,各3份)HCPT纳米粒甲醇溶液进行测定。低、中、高浓度日内精密度RSD分别为1.39%,0.33%和0.29%(n=3),日间精密度RSD分别为1.34%,0.19%和0.42%(n=3),均符合方法学要求。

2.1.4 回收率 分别精密移取不同体积已知药物浓度的HCPT/GA-PEI-PLGA纳米粒溶液于10 mL棕色量瓶中,加入适量甲醇破坏纳米粒后,甲醇定容,配成药物浓度分别为2.0,4.0,8.0 μg·mL-1溶液。分别测定A值,依据标准曲线计算回收率。低、中、高浓度回收率分别是(100.28±2.84)%,(100.91±1.61)%和(100.13±1.02)%,RSD分别为1.95%,0.66%和0.41%(n=3),均满足方法学要求。

2.2 HCPT/GA-PEI-PLGA纳米粒的制备

参考文献[9]方法,采用乳化-减压溶剂挥发法制备包载HCPT的GA-PEI-PLGA纳米粒。精密称取GA-PEI-PLGA 20 mg和HCPT适量,溶解于一定量二氯甲烷和甲醇组成的混合溶剂中。磁力搅拌下,将上述溶液逐滴加入适量纯化水中,继续搅拌5 min,使充分形成初乳。初乳溶液在冰水浴中超声乳化一定时间后,于34 ℃水浴中减压旋转蒸发20 min,除去有机溶剂。将所得纳米悬液用孔径0.45 μm微孔滤膜滤过后,用纯化水定容至50 mL,该纳米粒悬液于冰箱4 ℃保存,待用。

2.3 包封率和载药量的测定

取孔径0.45 μm微孔滤膜滤过后的载药纳米粒悬液1 mL,置于10 mL棕量瓶,加入适量甲醇破坏纳米粒且完全溶解药物后,甲醇定容,于383.0 nm波长处测定HCPT的A值,按下式计算包封率。

包封率 = 纳米粒中的药物质量 投药量 × 100 %

取一定量的载药纳米粒悬液,冷冻干燥后得疏松粉末。精密称取该冻干粉末约1 g,称取3份,分别置于10 mL棕量瓶,加入适量甲醇破坏纳米粒并完全溶解药物后,用甲醇定容至10 mL,于383.0 nm波长处测定A值,按下式计算纳米粒载药量。

载药量 = 纳米粒中的药物质量 载药纳米粒总质量 × 100 %

2.4 单因素试验

在载药GA-PEI-PLGA 纳米粒的制备过程中,多种因素影响其包封率和载药量。笔者首先采用单因素试验考察有机相种类(三氯甲烷/无水乙醇、二氯甲烷/无水乙醇和二氯甲烷/甲醇)及配比(1:3,2:2和3:1)、油相与水相体积比(1:5,1:7和1:9)、药物/载体比(1:10,2:10和3:10)、超声时间(5,10,15 min)、超声功率(30%、40%和50%,分别相当于285 W、380 W和475 W)等6个因素对纳米粒包封率和载药量的影响。

为使HCPT能充分溶于有机相中,选择3种不同二元混合溶剂系统作为有机相。如图2A所示,以二氯甲烷/甲醇为有机相时,包封率最高;以二氯甲烷/无水乙醇为有机相时,载药量最高。综合考虑溶剂系统的性质及纳米粒悬液的稳定性,宜选择二氯甲烷/甲醇系统作为有机相。

图2 B可知,随着二氯甲烷/甲醇体积比的增加,包封率呈现先上升后下降,载药量则呈现上升的趋势。综合考虑包封率、载药量以及对HCPT的溶解能力,选择二氯甲烷/甲醇体积比为2:2。由图2 C可以看出,油相/水相体积比对纳米粒的载药量影响并不十分明显,但是包封率随油相/水相体积比的增大而升高,因此选择一个合适的油相/水相体积比对载药纳米粒包封率和载药量有重要意义。由图2 D可以看出,纳米粒的载药量随投药量的增加而上升,而包封率却呈现下降趋势,因此必须选择合适的投药量,使载药量增加的同时能维持较高的包封率。由图2 E可以看出,包封率和载药量随着超声时间的延长而有所提高,超声时间为10 min时包封率达到最高,但是超过10 min后,包封率有所下降。由于超声时间过短会导致乳化不完全,药物析出,超声时间过长则会破坏体系的稳定性,因此选择合适的超声时间也是保证包封率和载药量的关键。由图2 F可以看出,包封率和载药量随着超声功率的增加而呈上升趋势,这表明超声功率对包封率和载药量也有一定的影响,因此,在纳米粒制备过程中,可以通过适当增加超声功率以提高包封率和载药量。

图2 单因素实验结果 A.有机溶剂系统考察;B.二氯甲烷/甲醇体积比考察;C.油相/水相体积比考察;D.药物/载体比考察;E.超声时间考察;F.超声功率考察;*1表示该纳米悬液静置数天后有沉淀。

Fig.2 Results of single-factor experiments A.composition of organic phase;B.the volume ratio of dichloromethane to methanol;C.the volume ratio of organic phase to water;D.the mass ratio of drug to carrier;E.sonication time;F.sonication power;*1precipitate was observed a few days after storage of nanosuspension

2.5 正交设计试验

根据单因素考察结果,选择对HCPT/GA-PEI-PLGA 纳米粒制备影响较大的4个因素:药物/载体比(A,m/m)、油相/水相体积比(B,V/V)、超声时间(C,min)、超声功率(D,%)作为考察因素,每个因素选取3个水平(表1),进行L9(34)正交实验(表2)。有机相组成为二氯甲烷/甲醇(2:2,V/V),以包封率和载药量的综合加权评分值作为评价指标,将包封率和载药量的理论最高值定为 100分,分别计算每次实验包封率和载药量的得分S1S2,以权重系数为0.5,计算综合加权评分值S。以正交设计助手Ⅱ软件对实验结果进行方差分析。

S = 0.5 × S 1 + 0.5 × S 2

表1 HCPT/GA-PEI-PLGA纳米粒制备工艺考察因素水平表
Tab.1 Factors and levels of preparation process for HCPT/GA-PEI-PLGA nanoparticles
水平 药物/载
体比(A)
油相/水相
体积比(B)
超声时间
(C)/min
超声功率
(D)/W
1 1:10 1:6 5 40
2 2:10 1:9 10 50
3 3:10 1:12 15 60

表1 HCPT/GA-PEI-PLGA纳米粒制备工艺考察因素水平表

Tab.1 Factors and levels of preparation process for HCPT/GA-PEI-PLGA nanoparticles

由正交试验直观分析结果可知(表2),以包封率为优化指标,各种因素影响的重要性顺序为药物/载体比>超声时间>超声功率>油相/水相体积比;而以载药量为优化指标,则为药物/载体比>油相/水相体积比>超声时间>超声功率。这些结果均表明药物/载体比对于HCPT/GA-PEI-PLGA纳米粒的包封率和载药量的影响最大。

表2 正交设计表和实验结果
Tab.2 Design and results of orthogonal test
序号 A B C D 包封
率/分
载药
量/分
综合指
标/分
1 1 1 1 1 80.48 42.68 61.58
2 1 2 2 2 76.51 54.35 65.43
3 1 3 3 3 95.46 41.42 68.44
4 2 1 2 3 78.60 73.34 75.97
5 2 2 3 1 81.13 74.25 77.69
6 2 3 1 2 78.95 72.23 75.59
7 3 1 3 2 75.20 85.16 80.18
8 3 2 1 3 77.79 87.29 82.54
9 3 3 2 1 72.77 84.35 78.56
包封率
K1 84.15 78.09 79.07 78.13
K2 79.56 78.48 75.96 76.89
K3 75.25 82.39 83.93 83.95
R 8.90 4.30 7.97 7.06
载药量
K1 46.15 67.06 67.53 67.09
K2 73.27 71.96 70.68 70.58
K3 85.60 66.00 66.94 67.35
R 39.45 5.96 3.74 3.49
综合指标
K1 65.15 72.58 73.24 72.61
K2 76.42 75.22 73.32 73.73
K3 80.43 74.20 75.44 75.65
R 15.28 2.64 2.20 3.04

A.the mass ratio of drug to carrier;B.the volume ratio of organic phase to water;C.sonicating time;D.sonicating power

A.药物/载体比;B.油相/水相体积比;C.超声时间;D.超声功率

表2 正交设计表和实验结果

Tab.2 Design and results of orthogonal test

包封率和载药量都是纳米粒质量评价的重要指标,应综合考虑二者的影响,以两者的综合指标对结果进行分析。由表3可知,固定R值最小的超声时间为误差项,方差分析结果表明,药物/载体比对HCPT/GA-PEI-PLGA纳米粒的制备有显著影响,而油相/水相体积比和超声功率对该载药纳米粒的制备影响并不显著。经优化后,最佳处方工艺为A3B2C3D3,即药物/载体比为3:10,油相/水相体积比为1:9,超声功率为570 W,超声时间为15 min。

表3 方差分析
Tab.3 Analysis of variance
因素 偏差平方和 自由度 F P
A 376.394 2 40.355 <0.05
B 10.659 2 1.143 >0.05
C 9.327 2 1.000
D 14.177 2 1.520 >0.05
C(误差) 9.327 2

F0.05(2,2)=19.00;A.the mass ratio of drug to carrier;B.the volume ratio of organic phase to water;C.sonicating time;D.sonicating power

F0.05(2,2)=19.00;A.药物/载体比;B.油相/水相体积比;C.超声时间;D.超声功率

表3 方差分析

Tab.3 Analysis of variance

2.6 优化工艺的验证

按正交设计实验筛选的最佳工艺条件,采用3种不同批号GA-PEI-PLGA制备3批载药纳米粒,并对其包封率和载药量进行测定。结果表明,采用优选的工艺条件制备的3批HCPT/GA-PEI-PLGA纳米粒的包封率可达(87.52±3.91)%,载药量为(20.10±4.72)%,表明正交设计实验优化的结果可靠。

2.7 GA-PEI-PLGA纳米粒粒径和Zeta电位的测定

按“2.2”项纳米粒的制备方法及“2.5”项的优化工艺分别制备3份空白以及载药GA-PEI-PLGA纳米粒悬液,以蒸馏水稀释至适当浓度,于 25 ℃下以激光散射粒径分析仪测定纳米粒的粒径及Zeta电位。由表4可知,所制备的GA-PEI-PLGA纳米粒粒径分布均匀,载药纳米粒的粒径(约218 nm)较空白纳米粒粒径(186 nm)稍大。载药纳米粒及空白纳米粒均带正电,两者的Zeta电位均约为34 mV,说明该纳米粒稳定性良好,不易发生聚集沉淀。

表4 空白及载药纳米粒的粒径和zeta电位
Tab.4 Particle size and zeta potential of blank and HCPT-loaded nanoparticles x¯±s
类型 粒径/nm 多分散系数 zeta电位/mV
空白纳米粒 186.0±10.0 0.228±0.021 33.63±11.92
载药纳米粒 218.1±3.23 0.100±0.071 34.98±3.56

表4 空白及载药纳米粒的粒径和zeta电位

Tab.4 Particle size and zeta potential of blank and HCPT-loaded nanoparticles x¯±s

3 讨论

HCPT不溶于水,且在有机溶剂中溶解性差,但在三氯甲烷/乙醇以及二氯甲烷/甲醇混合系统中溶解性较好[11]。甲醇和乙醇均能使有机相迅速扩散到水相中,但由于二氯甲烷和甲醇的蒸汽压(40 ℃时分别为102.18和34.73 kPa)比三氯甲烷和乙醇的蒸汽压(40 ℃时分别为42.12和18.36 kPa)更高,脱除速率更快,可使聚合物快速沉积,更有利于GA-PEI-PLGA包载HCPT,减少药物向水中的分配,从而提高包封率。经过筛选,笔者选择二氯甲烷/甲醇(2:2)二元溶剂体系作为有机相制备载药纳米粒。

在制备载药纳米粒时,超声乳化过程对纳米粒的形成有显著影响。将油相逐滴加入到水中后,油滴以较大粒径分散在水中;当在超声波的作用下,油相可均匀分散到水相中,同时油滴的粒径也大大减小。超声时间过短或功率过低时,油相在水相分布不均匀,容易导致载体材料和药物的析出;超声时间过长或功率过高,会引起超声探针附近的液体温度过高而破坏纳米粒[9]。经优化后,在超声功率为60%的工作条件下(相当于570 W)超声15 min可以制得包封率和载药量较优的HCPT/GA-PEI-PLGA纳米粒。

正交设计实验结果表明,药物/载体比对载药纳米粒的包封率和载药量的影响尤为显著,这是因为随着投药量增加,包封率和载药量随之增大,但到一定程度后,纳米载体对药物的负载达到饱和,继续增加投药量会造成药物无法全部被包载,导致药物的包封率降低。同时投药量过大,药物不易被载体包裹,药物容易发生渗漏,也会导致载药量的降低。

The authors have declared that no competing interests exist.

参考文献

[1] LI G F,LI Y,TANG Y,et al.Hydroxyethyl starch conjugates for improving the stability,pharmacokinetic behavior and antitumor activity of 10-hydroxy camptothecin[J].Int J Pharm,2014,417(1-2):234-244.
10-Hydroxy (10-HCPT)-hydroxyethyl (HES) conjugates were prepared to improve the water solubility, prolong the half-life in plasma and increase the antitumor efficacy of 10-HCPT, and the structures of the conjugates were confirmed by NMR and infrared spectroscopy. The 10-HCPT conjugates showed good sustained release effect in phosphate-buffered saline (PBS), plasma and liver homogenate. Meanwhile, 10-HCPT-HES conjugates achieved much lower IC50 and higher cytotoxicity effects than the free 10-HCPT on -3B and SMMC-7721 cell lines. The pharmacokinetics results of 10-HCPT-HES conjugates demonstrated that the biological half-life of 10-HCPT was increased from 10 min to 2.94 h and 3.76 h, respectively, in comparison with the commercial 10-HCPT injection. The pharmacodynamics results indicated that 10-HCPT-HES conjugate had a better antitumor efficiency against nude with -3B than the commercial 10-HCPT injection, and the inhibition ratio of was 78.3% and 31.5%, respectively, at the dose of 1.0 mg/kg. These findings suggest that 10-HCPT-HES conjugate is a promising drug delivery system providing improved long circulating effect, greater stability and better antitumor effect.
DOI:10.1016/j.ijpharm.2014.05.038      PMID:24861941      URL    
[本文引用:1]
[2] 王蓉,胡巍,吴松,.不同内酯型比例羟喜树碱对H22肝癌模型小鼠药效学[J].医药导报,2015,34(4):471-475.
目的考察不同内酯型比例羟喜树 碱(HCPT)对H22肝癌模型小鼠的抗肿瘤作用。方法构建H22肝癌小鼠模型,观察不同内酯型(0%,25%,50%,75%,100%)比例HCPT 对肿瘤的抑制率以及给药前后小鼠的生长状况,测定血清生化指标,考察不同内酯型比例HCPT对小鼠肝肾功能的影响。结果阳性药和不同内酯比例HCPT对肿 瘤均有抑制作用,抑制率分别为65.30%,12.57%,49.23%,75.47%,90.06%,93.22%;与模型对照组比较,不同内酯型比例 组小鼠生存状况均有改善。随着内酯型比例增加,小鼠肝损伤明显减轻,但肾脏损伤程度增加。结论 HCPT内酯型比例与抗肿瘤药效呈正相关,内酯型比例约75%有较好的抗肿瘤药效,且毒性较比例为100%内酯型更低。
DOI:10.3870/yydb.2015.04.013      URL    
[本文引用:1]
[3] VENDITTO V J,SIMANEK E E.Cancer therapies utilizing the camptothecins:a review of the in vivo literature[J].Mol Pharm,2010,7(2):307-349.
This review summarizes the in vivo assessment—preliminary, preclinical, and clinical—of chemotherapeutics derived from camptothecin or a derivative. Camptothecin is a naturally occurring, pentacyclic quinoline alkaloid that possesses high cytotoxic activity in a variety of cell lines. Major limitations of the drug, including poor solubility and hydrolysis under physiological conditions, prevent full clinical utilization. Camptothecin remains at equilibrium in an active lactone form and inactive hydrolyzed carboxylate form. The active lactone binds to DNA topoisomerase I cleavage complex, believed to be the single site of activity. Binding inhibits DNA religation, resulting in apoptosis. A series of small molecule camptothecin derivatives have been developed that increase solubility, lactone stability and bioavailability to varying levels of success. A number of macromolecular agents have also been described wherein camptothecin(s) are covalently appended or noncovalently associated with the goal of improv...
DOI:10.1021/mp900243b      PMID:20108971      URL    
[本文引用:1]
[4] ZHOU Y Y,DU Y Z,WANG L,et al.Preparation and pharmacodynamics of stearic acid and poly (lactic-co-glycolic acid) grafted chitosan oligosaccharide micelles for 10-hydroxycamptothecin[J].Int J Pharm,2010,393(1-2):143-151.
Stearic acid (SA) and poly (lactic-co-glycolic acid) (PLGA) grafted chitosan oligosaccharide (SA-CSO-PLGA SCP) tripolymer was synthesized via the reaction between the carboxyl group of SA or PLGA with carboxylic side group, and the amine group of CSO in the presence of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The degrees of amino-substitution for SA and PLGA were assayed through 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) test and 13 C NMR spectrum, which were 8.15% and 5.82%, respectively; the critical micelle concentrations of SCP in PBS (pH 7.4) and deionized water (DI water) were about 34.9 and 14.5渭g/ml, respectively. Using 10-hydroxycamptothecin (HCPT) as a model drug, the drug-loaded micelles showed above 86% encapsulation efficiency, which not only enhanced the solubility of HCPT in aqueous medium markedly, but also protected the lactone ring of HCPT. Cellular uptakes of SCP micelles against A549, MCF-7 and HepG-2 tumor cells showed a faster cellular internalization. Comparing to the commercial HCPT injection, HCPT-loaded micelles showed higher cytotoxicities against A549, MCF-7 and HepG-2 cells. The increased folds were 22, 18 and 15, respectively. These results suggested the SCP could be applied as a carrier for hydrophobic drugs.
DOI:10.1016/j.ijpharm.2010.04.025      PMID:20420886      URL    
[本文引用:2]
[5] CHEN S,WANG Q,GUO P,et al.Intracellular delivery of 10-hydroxycamptothecin with novel solid lipid nanoparticles (SLN) against multidrug resistance[J].J Control Release,2013,172(1):e27.
More and more data indicate the importance of palatability when selecting drugs for children. Since hypertension is uncommon in children, no child-friendly palatable formulations of these agents are currently available. As a consequence, in everyday practice available tablets are crushed and administered mixed with food or a sweet drink. We started investigating the issue of palatability of drugs among children in 2004 using smile-face scales. In the first trial we compared taste and smell acceptability of pulverized angiotensin receptor antagonists among nephropathic children and found that the score assigned to candesartan was significantly higher than that assigned to irbesartan, losartan, telmisartan and valsartan. In the second trial we compared the taste of pulverized amlodipine and lercanidipine among children and found that the score assigned to lercanidipine was significantly higher. Our third trial was performed using pulverized beta-adrenoceptor blockers, angiotensin-converting enzyme inhibitors, calcium-channel antagonists and diuretics among medical officers and pediatricians. The palatability scores assigned to chlorthalidone, hydrochlorothiazide and lisinopril were significantly higher to those assigned to atenolol, bisoprolol, enalapril and ramipril. In conclusion pulverized amlodipine, atenolol, bisoprolol, enalapril, irbesartan, losartan, ramipril, telmisartan and valsartan are poor tasting. From the child's perspective, lercanidipine, candesartan, chlorthalidone, hydrochlorothiazide and lisinopril are preferable. (C) 2013 Elsevier B. V. All rights reserved.
DOI:10.1016/j.jconrel.2013.08.061      PMID:24242492      URL    
[本文引用:1]
[6] 罗小林,易丹丹.抗肿瘤药物纳米给药系统研究进展[J].医药导报,2015,34(2):218-222.
纳米给药系统指粒径为10~100 nm的微粒分散体系,具有体内较长循环时间、肿瘤靶向、易被细胞摄取、调节药物释放、改善药物溶解度、增加药物稳定性等特点。该文对纳米给药系统的肿瘤靶向机制及临床应用进展进行综述,以期为抗肿瘤药物纳米给药系统的深入研究提供参考。
DOI:10.3870/yydb.2015.02.022      URL    
[本文引用:1]
[7] LIANG G F,ZHU Y L,SUN B,et al.PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in Hep G2 cells[J].Nanoscale Res Lett,2011,6(1):447-456.
Abstract<br/>The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(<span class="a-plus-plus emphasis type-small-caps">D</span>,<span class="a-plus-plus emphasis type-small-caps">L</span>-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.<br/>
DOI:10.1186/1556-276X-6-447      Magsci    
[本文引用:1]
[8] ZHANG C,WANG W,LIU T,et al.Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy[J].Biomaterials,2012,33(7):2187-2196.
Abstract Doxorubicin (DOX)-loaded glycyrrhetinic acid (GA)-modified alginate (ALG) nanoparticles (DOX/GA-ALG NPs) were prepared for targeting therapy of liver cancer. This study focused on the biodistribution of DOX/GA-ALG NPs in Kunming mice as well as their antitumor activity against liver tumors in situ and side effects. The biodistribution data showed that the concentration of DOX in the liver reached 67.8 ± 4.9 μg/g after intravenous administration of DOX/GA-ALG NPs, which was 2.8-fold and 4.7-fold higher compared to non-GA-modified nanoparticles (DOX/CHO-ALG NPs) and DOX·HCl, respectively. The concentration of DOX in the heart of mice treated with DOX/GA-ALG NPs at any sampling time was relatively lower than that of mice treated with DOX·HCl. The liver tumor growth inhibition rate (IR) in situ was about 52.6% and the mortality was 33% in DOX·HCl group. In contrast, the IR was 76.6% and no mice died in the DOX/GA-ALG NPs group. Histological examination showed tumor necrosis in both experimental groups. Most importantly, the heart cells and the liver cells surrounding the tumor were not affected by administration of DOX/GA-ALG NPs, whereas myocardial necrosis and apparent liver cell swelling were observed after DOX·HCl administration. Copyright 08 2011 Elsevier Ltd. All rights reserved.
DOI:10.1016/j.biomaterials.2011.11.045      PMID:22169820      URL    
[本文引用:1]
[9] 姜羽凤,王晓明,胡巧红,.姜黄素半乳糖化十六酰壳聚糖聚合物胶束的制备[J].广东药学院学报,2012,28(5):465-469.
目的 制备姜黄素半乳糖化棕榈酰壳聚糖聚合物胶束,并考察制备工艺对包封率和载药量的影响.方法 以半乳糖化十六酰壳聚糖(GHC)为载体材料,采用乳化-溶剂挥发法制备姜黄素聚合物胶束;应用正交试验考察药物∶载体质量比、油相∶水相体积比、超声时 间对载药聚合物胶束包封率和载药量的影响,以对制备工艺进行优化;以透射电镜(TEM)和动态光散射粒度分析仪(DLS)对聚合物胶束的形态、粒径和 Zeta电位进行测定.结果 药物∶载体质量比对胶束的包封率和载药量影响最大,其次为油相∶水相体积比和超声时间.最佳条件为药物∶载体质量比为1∶15,油相∶水相体积比为 1∶7,超声时间为30min.制备的载药胶束的形状为球形,大小均匀,平均粒径为179.7 nm,Zeta电位约为76.46 mV,包封率为96.3%,载药量为9.1%.结论 所采用的乳化-溶剂挥发法制备工艺适于制备姜黄素聚合物胶束.
[本文引用:1]
[10] PANYAM J,WILLIANS D,DASH A,et al.Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles[J].J Pharm Sci,2004,93(7):1804-1814.
Biodegradable nanoparticles formulated from poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA) polymers are being extensively investigated for various drug delivery applications. In this study, we hypothesize that the solid-state solubility of hydrophobic drugs in polymers could influence their encapsulation and release from nanoparticles. Dexamethasone and flutamide were used as model hydrophobic drugs. A simple, semiquantitative method based on drug-polymer phase separation was developed to determine the solid-state drug-polymer solubility. Nanoparticles using PLGA/PLA polymers were formulated using an emulsion-solvent evaporation technique, and were characterized for size, drug loading, and in vitro release. X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) were used to determine the physical state of the encapsulated drug. Results demonstrated that the solid-state drug-polymer solubility depends on the polymer composition, molecular weight, and end-functional groups (ester or carboxyl) in polymer chains. Higher solid-state drug-polymer solubility resulted in higher drug encapsulation in nanoparticles, but followed an inverse correlation with the percent cumulative drug released. The XRD and DSC analyses demonstrated that the drug encapsulated in nanoparticles was present in the form of a molecular dispersion (dissolved state) in the polymer, whereas in microparticles, the drug was present in both molecular dispersion and crystalline forms. In conclusion, the solid-state drug-polymer solubility affects the nanoparticle characteristics, and thus could be used as an important preformulation parameter.
DOI:10.1002/jps.20094      PMID:15176068      URL    
[本文引用:0]
[11] WANG W,LIU G J,WU J,et al.Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichlorome-thane/ethanol co-solvent[J].J Supercrit Fluid,2013,74(2):137-144.
In this study, 10-hydroxycamptothecin (HCPT) and poly ( l -lactic acid) (PLLA) are co-precipitated by the supercritical anti-solvent (SAS) process using a mixture of dichloromethane (DCM)/ethanol (EtOH) as co-solvent, and supercritical carbon dioxide as the anti-solvent. The effect of five operating conditions on particle morphology, mass median diameter (Dp 50 ) and HCPT loading is investigated using the single-factor method. The results indicate that HCPT loading can be greatly increased by using DCM/EtOH co-solvent, and the suitable operating conditions for the experimental system are determined. Under suitable conditions, the HCPT loading is 13.3% and Dp 50 is 794.5nm. The drug loaded microparticles are characterized in detail. The SEM images showed that most of the particles were spherical, and PLLA concentration has a major impact on the particle shape. Results of TEM, DSC and XRD indicate that the micronized HCPT is dispersed into the PLLA matrix. For low HCPT loading, most of HCPT existed in the drug loaded microparticles in an amorphous state, but for high HCPT loading, part of the encapsulated drug existed in crystalline form. FT-IR results show that SAS process does not change the chemical structure of HCPT. The result of in vitro drug release test indicated that the crystallinity of HCPT in microparticles affects the control release performance, and the good encapsulated microparticles with higher HCPT loading and higher crystallinity are better.
DOI:10.1016/j.supflu.2012.11.022      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
羟基喜树碱/GA-PEI-PLGA纳米粒
正交设计实验
制备工艺

Hydroxycampothecin GA-PEI...
Nanoparticles
Orthogonal design test
Preparation technology

作者
梁劲康
吴得天
胡巧红
吴雅琼

LIANG Jingkang
WU Detian
HU Qiaohong
WU Yaqiong