中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
HERALD OF MEDICINE, 2018, 37(1): 16-19
doi: 10.3870/j.issn.1004-0781.2018.01.004
白芍总苷对应激大鼠的行为和下丘脑神经内分泌的影响*
Effect of Total Glucosides of White Paeony Capsules on Psychological Ethology and Hypothalamic Neuroendocrine System of Stress Rats
丛茜玉, 王晓敏, 周志愉, 温晓梨, 刘志勇

摘要:

目的 观察白芍总苷对应激大鼠行为和神经内分泌的影响,探讨其部分作用机制。方法 雄性SD大鼠取10只作为正常对照组,其余40只采用不可预见性中等刺激建立应激大鼠模型,随机分为模型对照组、氟西汀(5.0 mg·kg-1)组和白芍总苷大、小剂量(66,33 mg·kg-1)组,每组10只。连续给药3周后,使用自主活动仪测定大鼠水平和垂直活动变化;采用悬尾实验观察大鼠情绪变化;采用苏木精-伊红染色观察肾上腺形态学变化,放射免疫法测定皮质酮和促肾上腺皮质激素(ACTH)的含量,实时-聚合酶链反应(RT-PCR)法检测下丘脑促肾上腺皮质素释放激素(CRH) mRNA的表达。结果 与模型对照组比较,白芍总苷大剂量组水平和垂直活动增加(P<0.05);不动时间减少(P<0.05),肾上腺指数下降,血清皮质酮和ACTH下降(P<0.05);下丘脑CRH mRNA的表达下降(P<0.05)。结论 白芍总苷能纠正应激大鼠行为和内分泌紊乱,可能是通过降低皮质酮水平和下丘脑CRH mRNA的表达,调整紊乱的下丘脑-垂体-肾上腺轴活动实现。

关键词: 白芍总苷 ; 下丘脑-垂体-肾上腺轴 ; 活动水平 ; 大鼠,应激

Abstract:

Objective To observe the effects of total glucosides of white paeony(GWP) on psychological ethology and neuroendocrine system of stress rats. Methods Ten male Sprague-Dawley rats were treated as normal control group, the others(n=40) were constructed by isolated custody and chronic unpredictable stimuli to build the model of stress rats.Stress rats were randomly divided into 4 groups:model control group,GWP high dose group and low dose(66,33 mg·kg-1) group,fluoxetine(5.0 mg·kg-1) group,each group had 10 rats.The changes of rat behavior were monitored by locomotor activity system.The change of emotion was observed by tail suspension test.The pathology change of adrenal was observed by HE staining.The levels of CorT and ACTH in serum were measured by radioimmunoassay.The expression of CRH mRNA of hypothalamic were detected by RT-PCR. Results The activity of the level scoring and vertical scoring of GWP high dose group was obviously improved as compared to that in model control group,while static time was significantly shortened,Adrenal index of GWP groups were increased significantly(P<0.05) ,thymus index of the treatment group was declined(P<0.05),CorT and ACTH content were decreased (P<0.05) and hypothalamus CRH mRNA of GWP group was decreased(P<0.05) . Conclusion The improvement of activity and related hormone anomalous changes were observed in rats treated with GWP.The mechanism of its actions might be involved adjusting the endocrine function,decreasing CorT and ACTH content and the expression of hypothalamic CRH mRNA of stress rats.

Key words: Total glucosides of white paeony ; Hypothalamic-pituitary-adrenal ; Activity ; Rats, stress

研究表明,白芍可以疏肝理气,柔肝养血,具有抗氧化、减少纤维蛋白原生成的作用,可提高免疫力,对风湿免疫病和肝纤维化具有良好疗效[1]。白芍总苷是白芍主要有效成分,具有明显的镇痛和调节情绪作用,但其具体机制尚不清楚[2]。本实验以采用不可预见性中等刺激建立应激大鼠模型,观察白芍总苷对应激大鼠的行为和内分泌激素及下丘脑的影响,以探讨白芍总苷调节应激的作用机制,为其临床应用提供理论依据。

1 材料与方法
1.1 实验动物

健康成年8周SD大鼠,雄性,体质量(200±20) g,由湖南斯莱克斯实验动物有限公司提供,动物生产许可证号:SCXK(湘)2013-0004,动物合格证号:00027305。饲养于江西中医药大学基础医学院实验动物中心。室温(20±25) ℃,相对湿度(45±65)%,12 h光照,12 h黑暗,动物自由摄食、饮水。

1.2 药材与试剂

白芍总苷购自宁波立华制药有限公司(批号:H2005058)。肾上腺皮质激素和皮质酮购自北京华英生物技术研究所(批号:bs004p,bs0382p),Trizol、RNA反转录试剂盒和实时荧光定量试剂盒购自TaKaRa公司(批号:DRR021A,DRR037A);实时荧光定量聚合酶链反应(RT-PCR)引物购自上海生物工程有限公司(批号:DRR081A)。

1.3 仪器

紫外分光光度计(UV-2102尤尼柯),r-911全自动放免计数仪(中国科技大学实业总公司),自主活动仪(Wertical activitysensor UGO Basile,Italy),酶标仪(Multiskan MK3,USA),RT-PCR仪(GeneAmp PCR System2400)。

1.4 方法

1.4.1 动物模型的建立与给药 SD大鼠适应性喂养3 d,取10只作为正常对照组,其余大鼠造模:给予慢性孤养加不可预见性中等刺激3周[3](应激源包括有夹尾1 min、36 V安全电电击30 s、束缚2 h、45°斜笼8 h,每天随机给予1种刺激源)。取造模成功[3]的应激大鼠40只,随机分为模型对照组、氟西汀组和白芍总苷大、小剂量组,每组10只。正常对照组和模型对照组每日灌胃饮用水2 mL;白芍总苷大、小剂量组分别灌胃给予白芍总苷66,33 mg·kg-1;氟西汀组灌胃给予氟西汀5.0 mg·kg-1,共3周。

1.4.2 观察自主活动 将大鼠放入自主活动仪中适应2 min后,分组前和处死前各记录10 min水平和垂直活动次数。

1.4.3 悬尾实验 悬尾箱自制。将大鼠距尾尖5 cm处固定于悬尾实验箱上,使其呈倒悬状态,头部距实验台面约15 cm,两侧用纸板隔开动物的视线。动物开始为了克服不正常的体位而挣扎,但经过一段时间以后会出现间断性的“不动”,显示出“失望”状态。记录5 min内的大鼠不动次数和上翻的次数[4]

1.4.4 肾上腺指数及形态 禁食12 h后称质量,股动脉取血后处死,取肾上腺称质量。计算肾上腺指数(脏器质量/体质量),肾上腺用10%甲醛固定包埋,采用苏木精-伊红(HE)染色观察形态学变化。

1.4.5 激素测定 放射免疫法测定血清促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)、皮质醇(cortisol,CorT)水平。

1.4.6 下丘脑促肾上腺皮质激素释放激素(corticotropin releasing hormone,CRH)mRNA表达 大鼠处死后冰上迅速摘取下丘脑(40~60 mg),Trizol提取总RNA,蛋白核酸分析仪测定RNA浓度后;M-MuLV 逆转录酶合成cDNA;用Primer 5软件设计引物(CRH,F:5'GAAAGGGGAAAGGCAAAG,R:CAGCGGGACTTC-TGTTGA);β-actin,F:5'CCCATCTATGAGGGTTACGC,R:TTTAATGTCACGCACGATTTC)。

1.4.7 统计学方法 数据以均数±标准差( x ¯ ±s)表示,采用SPSS17.0版统计软件处理,组间比较采用单因素方差分析,两两比较方差齐时LSD检验,方差不齐时用Dunnett’s T3检验,以P<0.05为差异有统计学意义。

2 结果
2.1 对应激大鼠活动度的影响

与正常对照组比较,模型对照组大鼠的水平与垂直活动均减少(P<0.05)。与模型对照组比较,白芍总苷组和氟西汀组大鼠水平活动与垂直活动均增加(P<0.05)。见表1。

表1 5组大鼠垂直与水平运动的变化
Tab.1 Changes of vertical and horizontal movement in five groups of rats 次,x¯±s,n=10
组别 剂量/
(mg·kg-1)
10 min内水平运动 10 min内垂直运动
正常对照组 - 1291.73±236.76 559.02±147.46
模型对照组 - 948.00±121.45*1 395.00±161.39*1
氟西汀组 5.0 1 107.83±149.49*2 412.75±149.49
白芍总苷
小剂量组 33 1 361.14±228.97*2 505.30±148.12
大剂量组 66 1 287.63±271.91*2 565.56±234.63*3
F 3.500 3.645
P 0.029 0.022

Compared with normal control group, *1P<0.01;Compared with model control group,*2P<0.01,*3P<0.05

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.01,*3P<0.05

表1 5组大鼠垂直与水平运动的变化

Tab.1 Changes of vertical and horizontal movement in five groups of rats 次,x¯±s,n=10

2.2 悬尾实验

与正常对照组比较,模型对照组大鼠的静止时间明显延长,上翻的次数明显减少(P<0.05);与模型对照组比较,白芍总苷大剂量组的静止时间明显减少(P<0.05);给药组上翻的次数显著增多(P<0.05)。见表2。

2.3 肾上腺指数的变化

正常对照组、模型对照组、氟西汀组和白芍总苷大、小剂量组肾上腺指数分别为(20.60±4.26),(27.90±5.53),(25.72±5.53),(23.01±3.27),(23.64±1.89) mg·(100 g)-1,与正常对照组比较,模型对照组大鼠的肾上腺组织体积增大,质量增加,肾上腺指数显著增大(P<0.05);各给药组的肾上腺指数均低于模型对照组,但是比正常对照组有所增高(F=2.823,P=0.047)。

表2 5组大鼠悬尾实验结果
Tab.2 Results of tail suspension test in five groups of rats x¯±s,n=10
组别 剂量/
(mg·kg-1)
静止不动
时间/s
5 min内上翻的
次数
正常对照组 - 109.40±17.09 63.30±13.65
模型对照组 - 139.12±12.28*1 35.63±7.70*2
氟西汀组 5.0 110.00±10.88 57.13±16.04*3
白芍总苷
小剂量组 33 100.88±14.66 64.75±11.36*3
大剂量组 66 99.87±8.42*3 56.75±9.48*3
F 5.458 3.462
P 0.007 0.024

Compared with normal control group, *1P<0.01,*2P<0.01;Compared with model control group,*3P<0.05

与正常对照组比较,*1P<0.01,*2P<0.01;与模型对照组比较,*3P<0.05

表2 5组大鼠悬尾实验结果

Tab.2 Results of tail suspension test in five groups of rats x¯±s,n=10

2.4 血清CorT、ACTH含量的变化

与正常对照组比较,模型对照组的CorT含量明显增高(P<0.01);与模型对照组比较,各给药组的CorT含量均有所降低,白芍总苷组和氟西汀组差异有统计学意义(P<0.05)。各给药组ACTH含量与正常对照组均差异无统计学意义(P>0.05),见表3。

表3 5组大鼠血清CorT、ACTH含量变化
Tab.3 Changes of the serum content of CorT and ACTH in five groups of rats x¯±s,n=10
组别 剂量/
(mg·kg-1)
CorT/
(ng·mL-1)
ACTH/
(pg·mL-1)
正常对照组 - 306.57±20.21 18.64±2.31
模型对照组 - 432.02±20.11*1 20.23±2.78
氟西汀组 5.0 378.80±21.10*2 19.45±2.34
白芍总苷
小剂量组 33 346.14±18.16*2*3 18.18±2.20
大剂量组 66 327.17±23.06*2*3 18.67±1.79
F 10.505 0.694
P 0.000 0.606

Compared with normal control group, *1P<0.01;Compared with model control group,*2P<0.05;Compared with fluoxetine group,*3P<0.05

与正常对照组比较,*1P<0.01;与模型对照组比较,*2P<0.05;与氟西汀组比较,*3P<0.05

表3 5组大鼠血清CorT、ACTH含量变化

Tab.3 Changes of the serum content of CorT and ACTH in five groups of rats x¯±s,n=10

2.5 肾上腺形态学变化

正常对照组大鼠肾上腺球状带和束状带分界清晰,束状带细胞排列成束,细胞结构完整。模型对照组大鼠肾上腺球状带和束状带分界模糊,束状带细胞数量增多,且排列紊乱,细胞体积增大,细胞质空泡增多,提示肾上腺分泌处于亢进状态。给予白芍总苷后大鼠肾上腺球状带和束状带分界清晰,分泌糖皮质激素的束状带细胞排列成束,稍紊乱,细胞体积增大,但细胞质空泡有所减少,血管扩张较模型对照组明显改善。见图1。

图1 5组大鼠肾上腺病理图(HE染色,×20) A.正常对照组 ;B.模型对照组;C.氟西汀组;D.白芍总苷组大剂量组;E.白芍总苷组小剂量组

Fig.1 Pathological images of five groups of rats (HE staining,×20) A.normal control group;B.model control group;C.fluoxetine group ;D.high-dose total glucosides of white paeony (GWP)group ;E.low-dose GWP group

2.6 下丘脑CRH mRNA变化

正常对照组、模型对照组、氟西汀组和白芍总苷大、小剂量组CRH mRNA相对表达分别为0.96±0.22,1.20±0.17,1.05±0.09,1.13±0.12,1.18±0.18 。与正常对照组比较,模型对照组大鼠下丘脑CRH mRNA含量上升(P<0.01)。与模型对照组比较,白芍总苷大剂量组大鼠CRH mRNA含量下降(P<0.01);白芍总苷小剂量组大鼠CRH mRNA含量下降不明显(P>0.05)。

3 讨论

《素问·举痛论》称“百病生于气也”;《素问·阴阳应象大论》称“怒伤肝,恐伤肾”。因肝主疏泄,喜条达,恶抑郁,故情志所伤大多与肝有着密切的联系[5-6]。依中医“形神若一”和情志致病理论,认为肝气郁结是应激中重要的精神刺激因素之一[7]。且临床上采用疏肝理气等中药治疗应激所致疾病已取得较好疗效[8-9]。应激状态下机体的焦虑、抑郁等情绪反应和行为均会发生显著变化。中医学认为,“有诸内者,必形之于外”,即机体外部的表现在一定程度上反映了机体内部的情况。本实验通过经典的动物行为实验——旷场实验和悬尾实验来反映应激大鼠行为和情绪的变化。在旷场实验中白芍总苷组的水平活动和垂直活动均增加。悬尾实验中大鼠始终处于一种被动的倒挂状态,大鼠为克服不正常体位而进行挣扎。若大鼠感到改变现状的希望小,欲放弃努力,即会减少或停止挣扎,表现为不动状态。本实验中给予白芍总苷后悬尾不动时间明显较短而上翻次数增多,表明其有提高应激大鼠活动,改善应激大鼠的不良情绪作用,提示白芍总苷具有调畅情志的药效作用。王景霞等[10]实验结果显示白芍提取物可显著缩短抑郁症小鼠强迫游泳及悬尾不动时间,与本研究的结论基本一致。

应激通过神经内分泌免疫网络对机体产生负性的影响,从而导致多个系统的功能改变或器质性损伤。机体的应激反应主要表现为下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenocortica,HPA)轴功能亢进,下丘脑促肾上腺激素释放激素、垂体促肾上腺激素和肾上腺糖皮质激素过度分泌[11]。而下丘脑分泌的CRH作为应激中的关键调节因子,通过其受体产生一系列生物学效应,协调机体各系统以应答应激刺激[12-13],故CRH被认为是行为、神经内分泌免疫对应激广泛反应的关键递质[14-15]。白芍总苷大剂量组大鼠下丘脑CRH mRNA表达明显下降,白芍总苷组血清CorT含量明显减少,且形态学结果也提示大鼠肾上腺球状带和束状带分界清晰,分泌糖皮质激素的束状带细胞排列成束,细胞体积增大,胞浆空泡有所减少,分泌的CorT明显减少,虽ACTH有所下降,但无统计学意义,可能是药物作用时间不够,且影响ACTH因素众多造成的。总之白芍总苷能使应激大鼠失调的CorT、ACTH得以恢复,调整了HPA轴功能,进而使应激大鼠的抑郁症状得到缓解。白芍总苷对应激大鼠行为学的改变、逆转HPA轴高功能状态与氟西汀的疗效基本相当。但其对下丘脑、垂体和肾上腺相互之间相互影响有待于进一步研究。

The authors have declared that no competing interests exist.

参考文献

[1] 李辉. 白芍总苷的抗炎活性[J].中国医院药学杂志,2011,31(4):283-286
目的:通过系列炎症模型,研究 白芍总苷(TGP)的抗炎活性特点。方法:采用小鼠热板法,醋酸腹膜炎模型,苯酚胶浆所致盆腔炎大鼠等实验观察白芍的镇痛抗炎效果。结果:白芍总苷在 200mg.kg-1时具有较好的镇痛作用,并对小鼠腹膜炎的白细胞渗出有一定抑制作用,对慢性盆腔炎大鼠的子宫粘连与扩张有较好的治疗作用。结论:白芍 总苷具有较好的镇痛、抗炎作用。
URL    
[本文引用:1]
[2] 崔广智,金树梅.芍药苷对利血平诱导抑郁模型的影响[J].中国实验方剂学杂志,2012,18(22):272-274.
[本文引用:1]
[3] 梁佳,卢峻,王俊仁,.不同针刺方法对慢性应激抑郁大鼠下丘脑CRH基因表达及血清ACTH、CORT的影响[J].北京中医药大学学报,2012,35(4):265-268.
[本文引用:2]
[4] 孙世光,李子峰,刘健,.昆明小鼠焦虑与抑郁动物模型相关性研究:明暗箱实验与悬尾实验[J].中国药理学通报,2012,28(2):289-293.
目的 探讨明暗箱实验(light/dark box,LDB)和悬尾实验(tail suspension test,TST)作为动物模型评价昆明小鼠焦虑与抑郁情绪的相关性.方法 成年♂昆明小鼠先后放入明暗穿梭箱和悬尾箱,摄像系统分别记录5 min和6 min内的行为变化,实验间隔1周,实验参数如下:LDB首次由明区进入暗区潜伏期(LDB_Latence)、明区停留时间百分率(LDB_Ltime%)、明区水平运动百分率(LDB_Lcross%)、明区垂直运动百分率(LDB_Lrear%),TST首次出现不动状态潜伏期(TST_Latence)、不动状态百分率(TST_Immobility%);采用因子分析、聚类分析、相关分析、一致性检验和生存分析等多种统计方法进行数据处理.结果 ①因子分析和聚类分析提示,LDB参数反映焦虑情绪,TST参数反映抑郁情绪.②相关分析提示,LDB与TST参数组内具有较好相关性,而组间相关性较差;ICC和Kappa统计参数提示,LDB与TST评价焦虑与抑郁情绪一致性较差.③生存分析提示,LDB与TST半数生存期差异无统计学意义.结论 LDB与TST相关参数各自独立反映了焦虑与抑郁情绪,但两者评价结果的相关性和一致性较差;在解决"特质焦虑与状态焦虑动物模型相关性"及"焦虑与抑郁动物模型相关性"科学问题时,可以考虑建立新型动物模型及综合评价方法或者筛选特质种属实验动物;而在进行药物效应评价时,可以考虑将多种动物模型联合组成"行为组学",根据不同结构维度进行"模式识别"评价.
[本文引用:1]
[5] 于峥,黄晓.肝主疏泄畅情志的理论内涵及临床应用[J].中医杂志,2013,54(22):1914-1916.
肝主疏泄是指肝具有疏通、宣泄和升发的生理功能,包括了调畅气机、促进津血的运行和代谢、调畅情志、促进脾胃消化及促进和调节生殖机能。情志是机体对外界客观事物的刺激所做出的情感方面的反应,人的情志活动,以气血为物质基础,肝主疏泄,调畅气机,促进气血的运行,故能调畅情志。病理性心理应激反应属于中医所述情志异常的范畴,心理应激从中医藏象分析当主要责之于肝,肝主疏泄可调节心理应激反应。心理应激可对机体产生全身性的影响,从而导致多个系统的功能改变或器质性损害,根据"肝主疏泄"的理论辨治现代多系统疾病可取得较好的临床疗效。
URL    
[本文引用:1]
[6] 刘子旺,赵海滨,张秀静,.电针肝俞、期门对肝气郁结模型大鼠行为学及HPA轴相关激素的影响[J].针灸临床杂志,2011,27(12):46-48.
目的:探讨电针对肝气郁结模型大鼠行为学影响及下丘脑-垂体-肾 上腺(HPA)轴相关激素的调节作用.方法:将Wistar大鼠30只随机分为正常对照组、肝郁模型组、电针治疗组,通过开野实验( Open - Field Test)及蔗糖水消耗实验进行大鼠行为学检测,运用ELISA法检测大鼠血清促肾上腺皮质激素释放激素(CRH)、皮质酮(CORT)含量,3组之间进 行比较.结果:与正常组相比,模型组Open -Field Test水平运动得分和垂直运动得分明显减少,蔗糖水偏嗜度明显减少,血清CORT、CRH的含量明显升高,而电针明显增加模型大鼠的水平得分、垂直得分 及蔗糖水偏嗜度,并可阻抑血清CRH、CORT的过度分泌.结论:肝气郁结大鼠存在活动度降低、探究行为减少、快感缺失和HPA轴亢进,电针肝俞、期门可 抑制CRH、CORT的过度分泌,缓解HPA轴亢进,外在体现为对模型大鼠行为学的改善.
[本文引用:1]
[7] 衣春光,李方莲,张茂云,.克郁舒神颗粒对实验性恶劣心境肝气郁结证大鼠海马BDNF的影响[J].中国实验方剂学杂志,2011,17(5):157-160.
[本文引用:1]
[8] 徐光华. 中西医结合治疗肝气郁结型2型糖尿病临床疗效观察[J].新中医,2014,46(7):150-151.
[本文引用:1]
[9] 阳媚. 疏肝理气法在功能性消化不良中的研究运用进展[J].中医研究,2014,27(11):75-77.
功能性消化不良是临床常见的功能性胃肠病之一,疏肝理气法为中医治疗该病的常用治法。通过阐述疏肝理气法对功能性消化不良临床治疗效果及心理和生活质量的影响,以及疏肝理气方剂治疗功能性消化不良的实验研究,对疏肝理气法在功能性消化不良中的研究运用进展做一综述。
[本文引用:1]
[10] 王景霞,张建军,李伟,.白芍提取物治疗抑郁症的实验研究[J].中国实验方剂学杂志,2010,16(7) :183-184.
目的:观察白芍提取物的抗抑郁作用.方法:采用小鼠悬尾、小鼠强迫游泳及利血平拮抗实验.白芍提取物22.5,45,90 mg·kg-1 ig 7 d后观察小鼠悬尾不动时间,强迫游泳不动时间及体温变化.结果:白芍提取物45,90 mg·kg-1·d-1均可显著缩短小鼠悬尾及强迫游泳不动时间(P<0.05),并显著对抗利血平所致的小鼠体温下降(P<0.05).结论:白芍提取物对小鼠具有明显的抗抑郁作用.
[本文引用:1]
[11] MAGUIRE J,SALPEKAR J A.Stress,seizures,and hypo-thalamic-pituitary-adrenal axis targets for the treatment of epilepsy[J].Epilepsy Behav,2013,26(3):352-362.
Abstract Epilepsy is a heterogeneous condition with varying etiologies including genetics, infection, trauma, vascular, neoplasms, and toxic exposures. The overlap of psychiatric comorbidity adds to the challenge of optimal treatment for people with epilepsy. Seizure episodes themselves may have varying triggers; however, for decades, stress has been commonly and consistently suspected to be a trigger for seizure events. This paper explores the relationship between stress and seizures and reviews clinical data as well as animal studies that increasingly corroborate the impact of stress hormones on neuronal excitability and seizure susceptibility. The basis for enthusiasm for targeting glucocorticoid receptors for the treatment of epilepsy and the mixed results of such treatment efforts are reviewed. In addition, this paper will highlight recent findings identifying a regulatory pathway controlling the body's physiological response to stress which represents a novel therapeutic target for modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, the HPA axis may have important clinical implications for seizure control and imply use of anticonvulsants that influence this neuronal pathway. Copyright 2012 Elsevier Inc. All rights reserved.
DOI:10.1016/j.yebeh.2012.09.040      PMID:23200771      URL    
[本文引用:1]
[12] HOITZMAN C W,TROTMAN H D,GOULDING S M,et al.Stress and neurodevelopmental processes in the emergence of psychosis[J].Neuroscience,2013,249(26):172-191.
The notion that stress plays a role in the etiology of psychotic disorders, especially schizophrenia, is longstanding. However, it is only in recent years that the potential neural mechanisms mediating this effect have come into sharper focus. The introduction of more sophisticated models of the interplay between psychosocial factors and brain function has expanded our opportunities for conceptualizing more detailed psychobiological models of stress in psychosis. Further, scientific advances in our understanding of adolescent brain development have shed light on a pivotal question that has challenged researchers; namely, why the first episode of psychosis typically occurs in late adolescence/young adulthood. In this paper, we begin by reviewing the evidence supporting associations between psychosocial stress and psychosis in diagnosed patients as well as individuals at clinical high risk for psychosis. We then discuss biological stress systems and examine changes that precede and follow psychosis onset. Next, research findings on structural and functional brain characteristics associated with psychosis are presented; these findings suggest that normal adolescent neuromaturational processes may go awry, thereby setting the stage for the emergence of psychotic syndromes. Finally, a model of neural mechanisms underlying the pathogenesis of psychosis is presented and directions for future research strategies are explored.
DOI:10.1016/j.neuroscience.2012.12.017      PMID:4140178      URL    
[本文引用:1]
[13] LOVEJOY D,CHANG B S,LOVEJOY N R,et al.Molecular evolution of GPCRs:CRH/CRH receptors[J].Mol Endocrinol,2014,52(3):43-60.
Corticotrophin-releasing hormone (CRH) is the pivotal neuroendocrine peptide hormone associated with the regulation of the stress response in vertebrates. However, CRH-like peptides are also found in a number of invertebrate species. The origin of this peptide can be traced to a common ancestor of lineages leading to chordates and to arthropods, postulated to occur some 500 million years ago. Evidence indicates the presence of a single CRH-like receptor and a soluble binding protein system that acted to transduce and regulate the actions of the early CRH peptide. In vertebrates, genome duplications led to the divergence of CRH receptors into CRH1 and CRH2 forms in tandem with the development of four paralogous ligand lineages that included CRH; urotensin I/urocortin (Ucn), Ucn2 and Ucn3. In addition, taxon-specific genome duplications led to further local divergences in CRH ligands and receptors. Functionally, the CRH ligand-receptor system evolved initially as a molecular system to integrate early diuresis and nutrient acquisition. As multicellular organisms evolved into more complex forms, this ligand-receptor system became integrated with the organismal stress response to coordinate homoeostatic challenges with internal energy usage. In vertebrates, CRH and the CRH1 receptor became associated with the hypothalamo-pituitary-adrenal/interrenal axis and the initial stress response, whereas the CRH2 receptor was selected to play a greater role in diuresis, nutrient acquisition and the latter aspects of the stress response.
DOI:10.1530/JME-13-0238      PMID:24711645      URL    
[本文引用:1]
[14] KOVACS K J.CRH:the link between hormonal-metabolic and behavioral responses to stress[J].Chem Neur,2013,54(7):25-33.
Two major and mutually interconnected brain systems are recruited during stress reaction. One is the hypothalamic paraventricular nucleus (PVH) and the second is the extended amygdala. PVH governs the neuroendocrine stress response while CeA regulates most of the autonomic and behavioral stress reactions. The common neurohormonal mediator of these responses is the corticotropin-releasing hormone, CRH, which is expressed in both centers. CRH belongs to a larger family of neuropeptides that also includes urocortins 1, 2, and 3 all have different affinity toward the two types of CRHR receptors and have been implicated in regulation of stress and HPA axis activity. One functionally relevant aspect of CRH systems is their differential regulation by glucocorticoids. While corticosterone inhibits CRH transcription in the PVH, stress-induced glucocorticoids stimulate CRH expression in the extended amygdala. This review summarizes past and recent findings related to CRH gene regulation and its involvement in the neuroendocrine, autonomic and behavioral stress reaction.
DOI:10.1016/j.jchemneu.2013.05.003      PMID:23774011      URL    
[本文引用:1]
[15] ALEVIZOS M,KARAGKOUNI A,PANGIOTIDOU S,et al.Stress triggers coronary mast cells leading to cardiac events[J].Ann Allergy Asthma Immunol,2014,112(4):309-316.
Abstract OBJECTIVE: Stress precipitates and worsens not only asthma and atopic dermatitis but also acute coronary syndromes (ACSs), which are associated with coronary inflammation. Evidence linking stress to ACS was reviewed and indicated that activation of coronary mast cells (MCs) by stress, through corticotropin-releasing hormone (CRH) and other neuropeptides, contributes to coronary inflammation and coronary artery disease. DATA SOURCES: PubMed was searched (2005-2013) for articles using the following keywords: allergies, anaphylaxis, anxiety, coronary arteries, coronary artery disease, C-reactive protein, cytokines, chymase, histamine, hypersensitivity, interleukin-6 (IL-6), inflammation, mast cells, myocardial ischemia, niacin, platelet-activating factor, rupture, spasm, statins, stress, treatment, tryptase, and uroctortin. STUDY SELECTIONS: Articles were selected based on their relevance to how stress affects ACS and how it activates coronary MCs, leading to coronary hypersensitivity, inflammation, and coronary artery disease. RESULTS: Stress can precipitate allergies and ACS. Stress stimulates MCs through the activation of high-affinity surface receptors for CRH, leading to a CRH-dependent increase in serum IL-6. Moreover, neurotensin secreted with CRH from peripheral nerves augments the effect of CRH and stimulates cardiac MCs to release IL-6, which is elevated in ACS and is an independent risk factor for myocardial ischemia. MCs also secrete CRH and uroctortin, which induces IL-6 release from cardiomyocytes. The presence of atherosclerosis increases the risk of cardiac MC activation owing to the stimulatory effect of lipoproteins and adipocytokines. Conditions such as Kounis syndrome, mastocytosis, and myalgic encephalopathy/chronic fatigue syndrome are particularly prone to coronary hypersensitivity reactions. CONCLUSION: Inhibition of cardiac MCs may be a novel treatment approach. Copyright 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
DOI:10.1016/j.anai.2013.09.017      PMID:4288814      URL    
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
白芍总苷
下丘脑-垂体-肾上腺轴
活动水平
大鼠,应激

Total glucosides of white...
Hypothalamic-pituitary-ad...
Activity
Rats, stress

作者
丛茜玉
王晓敏
周志愉
温晓梨
刘志勇

CONG Qianyu
WANG Xiaomin
ZHOU Zhiyu
WEN Xiaoli
LIU Zhiyong