中国科技论文统计源期刊 中文核心期刊  
美国《化学文摘》《国际药学文摘》
《乌利希期刊指南》
WHO《西太平洋地区医学索引》来源期刊  
日本科学技术振兴机构数据库(JST)
第七届湖北十大名刊提名奖  
医药导报, 2016, 35(7): 693-698
doi: 10.3870/j.issn.1004-0781.2016.07.003
新疆玫瑰花提取物体外降糖活性
Hypoglycemic Activity of Xinjiang Rose Extracts in Vitro
张晓翠1,2,, 汤丹1, 窦君1, 张富春2, 信学雷1, 陈君1, 阿吉艾克拜尔·艾萨1,

摘要:

目的 评价玫瑰花提取物的体外降糖活性,研究玫瑰花多酚作用的胰岛素信号通路并阐明其降糖作用机制。方法 采用脂质体介导的质粒转染法构建蛋白酪氨酸磷酸酶-1B(PTP1B)蛋白过表达的CHO-K1细胞模型,通过蛋白印迹分析法(Western blotting)研究玫瑰花多酚对细胞内信号分子蛋白表达量的影响。结果 体外玫瑰花提取物抑制PTP1B酶活性,半数抑制浓度(IC50)为62.31 ng·mL-1。玫瑰花提取物可提高细胞葡萄糖消耗,与阳性对照药作用相当;在细胞内可明显提高磷酸化的胰岛素受体底物1(IRS-1)、磷脂酰肌醇依赖性激酶1(PDK1)、蛋白激酶B(AKT)以及糖原合成激酶3β(GSK-3β)蛋白表达量。结论 玫瑰花提取物对PTP1B有良好的抑制活性,可促进葡萄糖消耗,具有潜在降糖活性;玫瑰花提取物通过增加IRS-1、下游信号分子PDK1、AKT以及GSK-3β蛋白的磷酸化水平来激活PI3K/AKT胰岛素信号通路,从而促进胰岛素信号传导和糖原合成,达到降低血糖的效果。

关键词: 玫瑰花提取物 ; 降糖活性 ; 葡萄糖消耗 ; 磷酸化水平 ; PI3K/AKT信号通路

Abstract:

Objective To evaluate hypoglycemic activity of rose extracts in vitro,find insulin-stimulated signaling pathway which rose extracts act on and illuminate its action mechanism. Methods CHO-K1 cell model was transfected to overexpress PTP1B by using liposome-mediated plasmid transfection methods,and the effects of rose extracts on expression of signal regulatory protein molecules were studied in vitro through western blot analysis. Results Rose extracts effectively inhibited PTP1B activity with IC50 value of 62.31 ng·mL-1 and increased glucose consumption, the effects were similar to the positive group; Rose extracts obviously elevated phosphorylated levels of IRS-1、 PDK1、AKT and GSK-3β. Conclusion Rose extracts had good inhibitory activity against PTP1B and promoted glucose consumption in CHO-K1 cell,which suggested it had potential hypoglycemic activity.Furthermore, rose extracts activated PI3K/AKT signaling pathway by increasing phosphorylated levels of IRS-1、PDK1、AKT and GSK-3β,and then promoted insulin signal transduction and glycogen synthesis.By these means, rose extracts ultimately achieved the goal of lowering blood sugar.

Key words: Rose extracts ; Hypoglycemic activity ; Glucose consumption ; Phosphorylated levels ; PI3K/AKT signaling pathway

玫瑰花含多酚类、生物碱等多种成分,其活性成分有抗氧化、抗疲劳、降血脂等多种功效,具有良好的药用和营养价值[1-3],在维吾尔医药经典名方中,新疆玫瑰花以干燥花瓣入药,是预防和治疗糖尿病的主要药材。已有研究报道多酚类化合物具有降糖功效[4],但有关玫瑰花多酚降糖的研究甚少。肖中平等[5]从玫瑰花提取物中分离得到黄酮类、鞣质等多酚类复合体,并检测到玫瑰花提取物总酚含量61.8%。笔者以富含多酚的玫瑰花提取物为研究对象,评价其体外降糖活性,分别从细胞水平和分子水平研究玫瑰花提取物如何调控细胞内蛋白分子传递降糖信号,进而阐明其降糖机制,以期为深入研究和高效开发利用新疆特色玫瑰花资源提供参考。

1 材料与方法
1.1 试药

玫瑰花瓣采自新疆维吾尔自治区和田墨玉县,自然晾干,经中国科学院新疆生态与地理研究所标本馆沈观冕研究员鉴定。CHO-K1中国仓鼠卵巢细胞购自中国科学院上海细胞库,pJ3H-PTP1B质粒构建来自本实验室。胎牛血清(fetal bovine serum,FBS,批号:202701-201302,货号:10099-141),胰蛋白酶(trypsin-EDTA,批号:102736-201104,货号:15400-054),DMEM改良型培养液(DMEM,批号:201830-201303,货号:11885-076),青链霉素(penicillin streptomycin,批号:158283-201108,货号:10378-016)和牛血清清蛋白(BSA,批号:120384-201205,货号:K720)均购自Gibco公司;二甲亚砜(DMSO,批号:130106-200901,货号:V900090),4-硝基苯基磷酸二钠盐(pNPP,批号:100143-201202,货号:N9389),异丙基β-D-1-硫代半乳糖吡喃糖苷(IPTG,批号:105352-201001,货号:I6758)和卡那霉素(Sigma 公司,批号:189374-201307,货号:E004000);Compound-2(Merck,批号:100283-201304,货号:539741);十二水合钒酸钠(Na3VO4·12H2O,批号:119832-201009,货号:13721-39-6);三羟甲基氨基甲烷(Tris-base,批号:130322-200906,货号:115F076)均购自Solarbio公司;葡萄糖测定试剂盒(普利莱公司,批号:133141,货号:E1010);蛋白裂解液RIPA(百泰克公司,批号:110293-201102,货号:PP1901);BCA蛋白定量试剂盒(百泰克公司,批号:137269-201302,货号:PP1001);聚山梨酯20(Life Science,批号:100329-2011-02,货号:TB0560);Trypan blue(Invitrogen,批号:104151-201202,货号:T10282);一抗包括胰岛素受体底物1(insulin receptor substrate-1,IRS-1)、磷脂酰肌醇依赖性激酶1(phosphoinositide-dependent kinase 1,PDK1)、蛋白激酶B(protein kinase B,AKT)、糖原合成激酶3β(glycogen synthase kinase 3 beta,GSK-3β)等均购自Cell Signaling公司;二抗羊抗兔辣根过氧化物酶(中杉金桥,批号:B141027,货号:ZDR-5306);FuGENE®HD Transfection Reagent(Roche公司,批号:11460100,货号:06366546001)。

1.2 实验仪器

电泳仪及Criterion半干转印仪(Bio-Rad);Spectra-Max MD5酶标仪(美国Molecular Devices);电子天平(Sartorius); 数字酸度计(Sartorius);二氧化碳(CO2)恒温细胞培养箱(BINDER);SZ-93自动双重纯水蒸馏器(MILLIPORE);生物超净工作台(Thermo);洁净操作台(苏州安泰技术有限公司)。

1.3 玫瑰花多酚提取方法

玫瑰花提取物由中国科学院新疆理化技术研究所干旱区植物资源化学重点实验室提供。玫瑰花多酚提取方法参照文献[5]工艺,称取玫瑰花提取物粉末100 mg,充分溶解于DMSO1 mL,作为原液-20 ℃存储。

1.4 体外蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)抑制活性测定实验

参照文献[6-7]方法,采用微量法测定PTP1B抑制活性,本体系反应总体积200 μL。PTP1B底物 p-NPP溶解于缓冲液(50 mmol·L-1 HEPES pH值7.3,100 mmol·L-1 NaCl,0.1% BSA,1 mmol·L-1 DTT)中,pNPP反应终浓度为5 mmol·L-1,提取物由DMSO溶解。取酶液0.5~1 μL,由300 μL PBS缓冲液稀释并充分混匀,取稀释好的酶液179 μL加至96孔板,再加入DMSO(玫瑰花提取物溶剂) 1 μL,柔和混匀,同时将PTP1B与提取物加入96孔板室温孵育5 min后加入35 mmol·L-1 p-NPP 20 μL,37 ℃避光反应30 min,3 mol·L-1 氢氧化钠(NaOH) 终止反应,酶标仪在波长405 nm处读取吸光度(A)值。按照以下公式计算抑制率,并依据抑制率计算相应半数抑制浓度(IC50)值。

抑制率(%)=[(阴性对照组-空白对照组)-(样品组-样品对照组)]/(阴性对照组-空白对照组)×100%。

1.5 葡糖糖消耗实验

将CHO-K1细胞铺6孔板,每孔细胞3×105个,10%FBS-DMEM培养液在5%CO2、37 ℃温箱培养24 h,换无血清DMEM培养基1 mL,并依次加入由DMSO溶解的玫瑰花提取物1 μL,终浓度0.01,0.1,1 μg·mL-1。设置阴性对照(DMSO1 μL)和阳性对照(PTP1B抑制剂500 mmol·mL-1,Compond -2(C-2),1 μL)。处理24 h,利用葡萄糖氧化酶试剂盒测定培养液中葡萄糖含量,计算每孔细胞消耗葡萄糖量。

1.6 PTP1B过表达实验-脂质体介导的质粒转染

按FuGENE® HD Transfection Reagent操作方法转染pJ3H-PTP1B质粒,CHO-K1细胞铺6孔板长至约80%,每孔加入DMEM 800 μL。按照2:10比例将携带PTP1B全长基因的pJ3H质粒DNA转染入CHO-K1细胞长至80%的6孔板,1.5 mL Ep管内加入无菌去离子水100 μL,加入质粒DNA2 μg,混匀,室温孵育10 min。在另一试管内无菌去离子水将10 μL脂质体稀释至100 μL,室温孵育10 min后将质粒稀释液和脂质体稀释液轻柔混合,共同孵育15 min。将质粒:脂质体转染溶液按2:10比例加入前述6孔板内,18 h后换无血清培养液,加入1 μg·mL-1玫瑰花提取物,分别处理3,6,12 h,并设置阴性对照DMSO。

1.7 蛋白质印迹分析实验(Western blotting)

CHO-K1细胞6孔板培养长至约80%换无血清培养液1 mL,依次加入玫瑰花提取物,使其终浓度分别为0.01,0.1,1 μg·mL-1,并设置阴性对照孔(DMSO)和阳性对照(C-2)。24 h后弃培养液,PBS清洗2次,加入终浓度16.7 nmol·L-1胰岛素溶液,室温孵育5 min,PBS清洗,在冰浴中,RIPA裂解液提取蛋白,13 000 r·min-1 4 ℃离心10 min,收集上清液。与5×Loading buffer混匀100 ℃变性5 min,12% SDS-PAGE电泳,半干转膜仪转膜15 Volt 20 min,5%脱脂奶粉封闭1 h,1:1 000稀释的一抗4 ℃孵育过夜,TBST清洗3次,与1:5 000稀释的二抗体杂交后,TBST清洗3次,采用增强化学发光剂(ECL)检测目的蛋白[8]

1.8 统计学方法

每次实验设置重复空3次,实验数据用均数±标准差( x ¯ ±s)表示,应用Prism5.0版软件进行统计学分析,采用t检验及单因素方差分析,以P<0.05表示差异有统计学意义。

2 结果
2.1 玫瑰花提取物对PTP1B蛋白活性的影响

PTP1B阳性抑制剂Na3VO4 的 IC50为11.63 ng·mL-1,玫瑰花提取物抑制PTP1B的IC50为62.31 ng·mL-1,玫瑰花提取物与Na3VO4 对PTP1B的抑制率相近,表明其有较强的体外PTP1B抑制活性。

2.2 玫瑰花提取物对CHO-K1细胞葡萄糖消耗的影响

与阴性对照组(DMSO组)比较,0.01,0.1,1 μg·mL-1玫瑰花提取物均可降低培养液上清液葡萄糖含量,且玫瑰花提取物浓度越高,作用越明显。0.1 μg·mL-1玫瑰花提取物与模型对照组(C-2组)效果相当,1 μg·mL-1玫瑰花提取物可明显降低培养液上清液中葡萄糖含量,与C-2组比较,差异有统计学意义(P<0.05)。3种浓度玫瑰花提取物对葡萄糖消耗均有一定促进作用,且呈现玫瑰花提取物剂量增加,培养液中葡萄糖含量逐渐降低的反应关系,1 μg·mL-1玫瑰花提取物可明显促进葡萄糖的消耗,且作用效果强于C-2组。上述结果表明,玫瑰花提取物在细胞水平可有效促进胞内葡萄糖消耗,该正调控作用可能与PTP1B活性受抑制相关(图1)。

图1 玫瑰花提取物对CHO-K1细胞葡萄糖消耗作用
与C-2组比较,*1P<0.05

Fig.1 Effect of rose extracts on glucose consumptions of CHO-K1 cells
Compared with the C-2 group,*1P<0.05

2.3 玫瑰花提取物对PTP1B过表达的CHO-K1细胞中AKT磷酸化水平的影响

与阴性对照组(Di组)比较,在胰岛素协同作用下,随着给药时间延长,玫瑰花提取物在不同作用时间下不同程度提高磷酸化AKT蛋白表达量,呈正相关。与Di组比较,差异有统计学意义(P<0.01)。提示虽然CHO-K1细胞PTP1B蛋白过表达,但随着玫瑰花提取物作用时间的延长,过表达PTP1B受到有效抑制,PTP1B去磷酸化作用随之持续减弱,因此AKT蛋白磷酸化水平逐渐增强(图2)。

图2 玫瑰花提取物对PTP1B过表达CHO-K1细胞中AKT磷酸化水平的影响(x¯±s,n=)
“+”和“-”分别表示“有”和“无”;与Di组比较,t=72.68,46.75,131.50,*1P<0.01;D.空白对照组;Di.阴性对照组;3 h、6 h、12 h:表示玫瑰花提取物作用时间

Fig.2 Effect of rose extract on the level of phosphorylated-AKT in the CHO-K1 cell line overexpressing PTP1B
“+”and“-”:represent “positive”and“negative”,Compared with Di group,t=72.68,46.75,131.50,*1P<0.01;D.blank control group; Di.negative control group; 3 h,6 h and 12 h,represent the incubation time of rose extract

2.4 玫瑰花提取物对信号通路中关键蛋白磷酸化水平的影响

与Di组比较,3种浓度玫瑰花提取物分别作用于CHO-K1细胞,在胰岛素协同作用下,随玫瑰花提取物浓度递增,胰岛素受体底物(IRS-1)、丝/苏氨酸激酶(AKT)、3-磷酸肌醇依赖性蛋白激酶1(PDK1)以及糖原合成激酶3β(GSK-3β)磷酸化水平提高,且差异有统计学意义(P<0.05或P<0.01)。其中,1 μg·mL-1玫瑰花提取物可显著提高IRS-1、GSK-3β磷酸化水平,增强效果超过阳性对照C-2。提示玫瑰花提取物通过提高关键蛋白磷酸化水平来活化蛋白,从而有效激活胰岛素刺激的AKT信号通路(图3,4)。

图3 6组信号通路蛋白分子磷酸化水平测定结果(x¯±s)
“+”和“-”分别表示“有”和“无”;与Di组比较,*1P<0.05,*2P<0.01;D.空白对照组;Di.阴性对照组;C-2.阳性对照组

Fig.3 Phosphorylation levels of signaling pathway protein in six groups(x¯±s)
“+”and“-”:represent “positive”and“negative”,Compared with Di group,*1P<0.05,*2P<0.01;D.black control group;Di.negative control group;C-2.positive control group

图4 胰岛素信号通路促进糖原合成以及调节GLUT4转移至细胞膜的分子机制

Fig.4 Molecular mechanisms of insulin signaling pathway promoting glycogen synthesis and regulating GLUT4 metastasis to the cell membrane

3 讨论

糖尿病是一组以血糖水平升高为特征的代谢性疾病群。血糖明显升高时可出现多尿、多饮、体质量减轻甚至视力模糊等症状,严重时会导致器官组织损害,引起脏器功能障碍。胰岛素分泌缺陷或者胰岛素作用缺陷都可能造成血糖升高、糖、脂肪、蛋白质等物质代谢紊乱。PTP1B在胰岛素信号转导过程中起负调控作用,已有研究发现,肥胖和2型糖尿病人群细胞内PTP1B过表达,可能导致胰岛素抵抗 [9]。另有研究报道,敲除PTP1B基因后可明显改善小鼠外周胰岛素抵抗。可见PTP1B是治疗糖尿病(尤其是2型糖尿病)和肥胖病的新靶点[10-12]。有研究报道,黄连素可以通过抑制PTP1B活性来恢复胰岛素的降血糖作用。另有报道Nck蛋白适配体可以通过削弱PTP1B表达量来激活PI3K/AKT通路,因此,抑制PTP1B的过表达可以有效激活胰岛素信号转导通路,从而促进胰岛素发挥降糖作用,起到干预糖尿病的作用 [13-14]

随着生活水平的提高,人们希望选择安全高效的降糖药物来取代不良反应大的化学合成类药物,因此从传统中草药中寻找有效降糖的天然成分已成为药物研发的热点,笔者试图从新疆和田玫瑰花中寻找PTP1B抑制剂,获得具有降糖活性的有效成分并初步阐明其降糖机制。首先,体外PTP1B抑制活性实验结果显示,玫瑰花提取物可有效抑制PTP1B酶活,其IC50值62.31 ng·mL-1,效果与阳性对照药钒酸钠相近。利用CHO-K1细胞观察玫瑰花提取物作用,通过葡萄糖氧化酶法检测,证实其确实能够促进细胞的葡萄糖消耗,且1 μg·mL-1时的药效优于C-2组。将PTP1B基因转染到CHO-K1细胞中,使PTP1B蛋白在CHO-K1细胞内过表达,然后考察玫瑰花提取物对胰岛素信号通路中关键蛋白分子的影响,IRS-1、AKT、 GSK-3β磷酸化水平的提升表明玫瑰花提取物削弱了PTP1B过表达对胰岛素信号传导造成的负作用,随着时间延长,持续药效激活P13K/AKT信号通路,促进细胞的葡萄糖消耗,从而达到降低血糖含量的目的。

由实验结果推测,玫瑰花提取物主要作用是PI3K/AKT胰岛素信号路径,推理过程如下:胰岛素是糖代谢中的重要调控激素。正常情况下,胰岛素首先与细胞表面的胰岛素受体结合,随后通过胰岛素受体底物蛋白(IRS)激活PI3K/AKT信号通路,发挥胰岛素降糖作用[15-16]。PTP1B蛋白在CHO-K1细胞内过表达的情况下,PTP1B负调控作用会抑制IRS-1自身磷酸化使其失活,阻碍胰岛素在PI3K/AKT通路中的信号传导,导致血糖偏高。而玫瑰花提取物处理CHO-K1细胞后,PTP1B活性受到抑制,磷酸化IRS-1蛋白的表达量增加,下游PI3K以及PDK1都可接收到IRS-1信号,激活PI3K/AKT信号通路,AKT磷酸化水平也相应增加,磷酸化AKT增强GSK-3β磷酸化作用,激活糖原合成酶,促进糖原合成和葡萄糖利用,进而降低血糖。

The authors have declared that no competing interests exist.

参考文献

[1] 刘勇军. 维吾尔药志(上册)[M].乌鲁木齐:新疆人民出版社,1999:291.
[本文引用:1]
[2] SCHRINER S E,KATOOZI N S,PHAM K Q,et al.Exten-sion of Drosophila lifespan by Rosa damascene associated with an increased sensitivity to heat[J].Biogerontology,2012,13(2):105-117.
Abstract<br/><em class="a-plus-plus">Rosa damascena</em>, or Damask rose, is a rose hybrid commonly harvested for rose oil used in perfumery and for rose water used to flavor food. The petal extract of <em class="a-plus-plus">R. damascena</em> was recently found to decrease <em class="a-plus-plus">Drosophila melanogaster</em> mortality without impairing reproductive fitness or metabolic rate. Here, we report that <em class="a-plus-plus">R. damascena</em> extended both mean and maximum lifespan of the fly. The extract also protected against oxidative stress in flies, predominantly in females. However, it did not alter mitochondrial respiration or content, superoxide production, or the major antioxidant defenses, superoxide dismutase and catalase. The extract increased survival in both sexes when exposed to reduced iron, though surprisingly, it sensitized both sexes to heat stress (survival at 37°C), and appeared to down-regulate the major heat shock protein HSP70 and the small mitochondrial heat shock protein HSP22, at 25°C and after heat shock (4 h at 37°C). We hypothesize that <em class="a-plus-plus">R. damascena</em> extends lifespan by protecting against iron, which concomitantly leads to decreased HSP expression and compromising heat tolerance.<br/>
DOI:10.1007/s10522-011-9357-0      Magsci    
[本文引用:0]
[3] 熊丽娜. 我国常见食用花卉多酚组分及其生物功效研究[D].杭州:浙江大学,2014:1-76.
[本文引用:1]
[4] 费群勤,秦一禾,杨孟伽,.乌龙茶粗多酚、EGCG和EGCG3”Me体外抑制α-葡萄糖苷酶活性[J].食品科学,2014,35(21):10-15.
为研究乌龙茶粗多酚、表没食子儿茶素没食子酸酯((-)-epigallocatechin gallate,EGCG)、甲基化EGCG(epigallocatechin3-O-(3-O-methyl)gallate,EGCG3’’Me)对α-葡萄糖苷酶活性的抑制作用,采用酶动力学和紫外吸收光谱方法,探究并比较了三者的抑制活性及类型。结果表明:乌龙茶粗多酚、EGCG和EGCG3’’Me对α-葡萄糖苷酶均有较强的抑制作用,半抑制浓度(half inhibitory concentration,IC50)依次为0.178、0.040、0.064 mg/m L;Lineweaver-Burk双倒数作图显示乌龙茶粗多酚和EGCG的抑制类型为非竞争抑制,而EGCG3’’Me为竞争性抑制;紫外吸收光谱实验表明乌龙茶多酚样品能够使α-葡萄糖苷酶的吸收光谱发生蓝移,推测酶蛋白的构象有所变化。EGCG与EGCG3’’Me对α-葡萄糖苷酶活性的影响和抑制类型的不同可能是由于EGCG的一个羟基被甲氧基取代所引起的。
DOI:10.7506/spkx1002-6630-201421003      URL    
[本文引用:1]
[5] 肖中平,仲婕,穆沙江,.大孔吸附树脂富集玫瑰花总酚工艺研究[J].医药导报,2010,29(2):139-142.
目的 筛选富集玫瑰花总酚的最佳树脂型号及最佳工艺.方法 通过静态、动态吸附-解吸附相结合方法,以总酚含量和有效部位质量为评价指标,综合评分法确定最优工艺条件.结果 HPD600树脂富集效果最好,其最佳吸附工艺为:上样液浓度5.50 mg·mL-1,洗脱乙醇浓度(V/V)50%,洗脱体积5倍柱床体积(BV),洗脱流速4 BV·h -1.富集后总酚质量分数>60%.结论 HPD600树脂富集玫瑰花总酚含量高,工艺简单,适合大生产.
DOI:10.3870/yydb.2010.02.002      URL    
[本文引用:1]
[6] SUN T,WANG Q,YU Z G,et al.Hyrtiosal,a PTP1B inhibitor from the marine sponge Hyrtios erectus,shows extensive cellular effects on PI3K/AKT activation,glucose transport,and TGFbeta/Smad2 signaling[J].Chem Bio Chem,2007,22(2):187-193.
[本文引用:1]
[7] BURKE T R,YE J B,YAN X J,et al.Small molecule interactions with protein-tyrosine phoslphatase PTPl B and their use in inhibitor design[J].Biochemistry,1996,35(12):15989-15996.
[本文引用:1]
[8] 信学雷,吴汉夔,.维吾尔药毛菊苣提取物降糖活性的研究[J].天然产物研究与开发,2012,24(2):234-238.
本文利用糖尿病及其并发症治疗药物筛选中的关键靶点:PTP1B、α-葡萄糖苷酶和蛋白非酶糖化过程,对维吾尔药毛菊苣中提取分离后获得11个标准提取物进行降糖活性成分筛选。结果表明它们都具有PTP1B抑制剂作用,其中活性最好的组分IC50为5.8±0.15μg/mL,五种毛菊苣根提取物和一种毛菊苣籽(CGS-1)提取物具有α-葡萄糖苷酶抑制活力,仅CGS-1具有一定的抑制蛋白非酶糖化过程的能力,其他组分均未见此活力,最后在转染的CHO细胞上对CGS-1作用机理进行了初步探索,观察到CGS-1可使磷酸化AKT蓄积,提示该组分可能通过PI3K/AKT途径刺激GLU4的转运从而达到降糖的目的。
[本文引用:1]
[9] NEGLIA C,AGNELLO N,ARGENTIERO A,et al.Incr-eased risk of osteoporosis in postmenopausal women with type 2 diabetes mellitus:a three-year longitudinal study with phalangeal qus measurements[J].J Biol Regul Homeost Agents,2014,28(4):733-741.
[本文引用:1]
[10] IVERSEN L F,ANDERSEN H S,BRANNER S,et al.Structure-based design of a low molecular weight,nonphosphorus,nonpeptide,and highly selective inhibitor of protein-tyrosine phosphatase 1B[J].J Bio Chem,2000,275(14):10300-10307.
Several protein-tyrosine phosphatases (PTPs) have been proposed to act as negative regulators of insulin signaling. Recent studies have shown increased insulin sensitivity and resistance to obesity in PTP1B knockout mice, thus pointing to this enzyme as a potential drug target in diabetes. Structure-based design, guided by PTP mutants and x-ray protein crystallography, was used to optimize a relatively weak, nonphosphorus, nonpeptide general PTP inhibitor (2-(oxalyl-amino)-benzoic acid) into a highly selective PTP1B inhibitor. This was achieved by addressing residue 48 as a selectivity determining residue. By introducing a basic nitrogen in the core structure of the inhibitor, a salt bridge was formed to Asp-48 in PTP1B. In contrast, the basic nitrogen causes repulsion in other PTPs containing an asparagine in the equivalent position resulting in a remarkable selectivity for PTP1B. Importantly, this was accomplished while retaining the molecular weight of the inhibitor below 300 g/mol.
DOI:10.1074/jbc.275.14.10300      PMID:10744717      URL    
[本文引用:1]
[11] JIANG C S,LIANG L F,GUO Y W.Natural products possessing protein tyrosine phosphatase 1B(PTP1B) inhibitory activity found in the last decades[J].Acta Pharmacologica Sinica,2012,33(9):1217-1245.
This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented.
DOI:10.1038/aps.2012.90      PMID:22941286      URL    
[本文引用:0]
[12] BENTO J L,PALMER N D,MYCHALECKYJ J C,et al.Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes[J].Diabetes,2004,53(11):61-63.
The PTPN1 gene codes for protein tyrosine phosphatase 1B (PTP1B) (EC 3.1.3.48), which negatively regulates insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor kinase activation segment. PTPN1 is located in 20q13, a genomic region linked to type 2 diabetes in multiple genetic studies. Surveys of the gene have previously identified only a few uncommon coding single nucleotide polymorphisms (SNPs). We have carried out a detailed association analysis of 23 noncoding SNPs spanning the 161-kb genomic region, which includes the PTPN1 gene. These SNPs have been assessed for association with type 2 diabetes in two independently ascertained collections of Caucasian subjects with type 2 diabetes and two control groups. Association is observed between multiple SNPs and type 2 diabetes. The most consistent evidence for association occurred with SNPs spanning the 3' end of intron 1 of PTPN1 through intron 8 (P values ranging from 0.043 to 0.004 in one case-control set and 0.038-0.002 in a second case-control set). Analysis of the combined case-control data increased the evidence of SNP association with type 2 diabetes (P = 0.005-0.0016). All of the associated SNPs lie in a single 100-kb haplotype block that encompasses the PTPN1 gene. Analysis of haplotypes indicates a significant difference between haplotype frequencies in type 2 diabetes case and control subjects (P = 0.0035-0.0056), with one common haplotype (36%) contributing strongly to the evidence for association with type 2 diabetes. Odds ratios calculated from single SNP or haplotype data are in the proximity of 1.3. Haplotype-based calculation of population-attributable risk (PAR) results in an estimated PAR of 17-20% based on different models and assumptions. These results suggest that PTPN1 is a significant contributor to type 2 diabetes susceptibility in the Caucasian population. This risk is likely due to noncoding polymorphisms.
DOI:10.2337/diabetes.53.11.3007      PMID:15504984      URL    
[本文引用:1]
[13] CHEN C H,ZHANG Y B,HUANG C,et al.Berberine inhibits PTP1B activity and mimics insulin action[J].Biochem Biophy Res Commun,2010,397(14):543-547.
Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.
DOI:10.1016/j.bbrc.2010.05.153      PMID:20515652      URL    
[本文引用:1]
[14] LI H,DUSSEAULT J,LAROSE L.Nck1 depletion induces activation of the PI3K/Akt pathway by attenuating PTP1B protein expression[J].Cell Commun Signa,2014,12(11):71.
BACKGROUND: Activation of the PI3K/Akt pathway mediates crucial cellular functions regulated by receptor tyrosine kinases, such as cell growth, proliferation, survival and metabolism. Previously, we reported that the whole-body knockout of the Src homology domain-containing adaptor protein Nck1 improves overall glucose homeostasis and insulin-induced activation of the PI3K/Akt pathway in liver of obese mice. The aim of the current study is to elucidate the mechanism by which Nck1 depletion regulates hepatic insulin signaling. RESULTS: Here, we demonstrate that Nck1 regulates the activation of the PI3K/Akt pathway in a protein tyrosine phosphatase 1B (PTP1B)-dependent mechanism. Indeed, depletion of Nck1 by siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation. In accordance, primary hepatocytes isolated from Nck1 (-/-) mice also display enhanced Akt activation in response to insulin. Activation of the PI3K/Akt pathway in Nck1-depleted HepG2 cells relies on higher levels of tyrosine-phosphorylated proteins and correlates with decreased PTP1B levels. Interestingly, Nck1 and PTP1B in cells are found in a common molecular complex and their interaction is dependent on the SH3 domains of Nck1. Finally, Nck1 depletion in HepG2 cells neither affects PTP1B gene transcription nor PTP1B protein stability, suggesting that Nck1 modulates PTP1B expression at the translational level. CONCLUSION: Our study provides strong evidence supporting that the adaptor protein Nck1 interacts with PTP1B and also regulates PTP1B expression. In this manner, Nck1 plays a role in regulating the PI3K/Akt pathway.
DOI:10.1186/PREACCEPT-1228634217131747      PMID:25398386      URL    
[本文引用:1]
[15] COHEN P.The twentieth century struggle to decipher insulin signaling[J].Nat Rev Mol Cell Biol,2006,34(7):867-873.
Following the discovery of insulin, it took the rest of the twentieth century to understand how this hormone regulates intracellular metabolism. What are the main discoveries that led to our current understanding of this process? And how is this new knowledge being exploited in an attempt to develop improved drugs to treat the epidemic of type-2 diabetes?
DOI:10.1038/nrm2043      PMID:17057754      URL    
[本文引用:1]
[16] TANIGUCHI C M,EMANUELLI B,KAHN C R.Nodes in signaling pathways:insights into insulin action[J].Nat Rev Mol Cell Biol,2006,11(7):85-96.
[本文引用:1]
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
玫瑰花提取物
降糖活性
葡萄糖消耗
磷酸化水平
PI3K/AKT信号通路

Rose extracts
Hypoglycemic activity
Glucose consumption
Phosphorylated levels
PI3K/AKT signaling pathwa...

作者
张晓翠
汤丹
窦君
张富春
信学雷
陈君
阿吉艾克拜尔·艾萨

ZHANG Xiaocui
TANG Dan
DOU Jun
ZHANG Fuchun
XIN Xuelei
CHEN Jun
HAJI AKBER·AISA