目的 检测常用中成药的钾含量,为慢性肾脏病(CKD)患者安全使用中成药提供参考。 方法 选取32种常用中成药,微波消解后,采用电感耦合等离子体发射光谱法检测钾的含量,计算每日药源性钾摄入量,评估对CKD患者的影响。 结果 32种中成药都有钾的检出,含量各有差异。其中成方制剂含钾量较高,单味制剂次之,提取物制剂最低;每日药源性钾摄入量超过100 mg的中成药有8种,包括CKD患者常用的尿毒清颗粒等。 结论 中成药潜在的钾负荷可能使CKD患者钾摄入超标,升高血清钾,增加高钾血症风险,应引起重视。
Objective To determine the potassium content of commonly used Chinese patent medicines (CPMs) and to provide a reference for the safe use of CPMs in patients with chronic kidney disease (CKD). Methods A total of 32 commonly used CPMs were selected and detected for potassium content by inductively coupled plasma-optical emission spectrometry after microwave ablation, and the daily drug-derived potassium intake was calculated.The effect on CKD patients was evaluated. Results Potassium was detected in all 32 CPMs with varying levels.Among them, the prescription preparation has the highest potassium content, followed by single flavor preparation, and the extract preparation has the lowest potassium content.Eight CPMs had a daily pharmacogenic potassium intake of more than 100mg, including uremic clearance granules, which are commonly used by CKD patients. Conclusion It is noteworthy that the potential potassium load of CPMs might cause the intake of potassium to exceed the standards in CKD patients to raise serum potassium and increase the risk of hyperkalemia.
开放科学(资源服务)标识码(OSID)
高钾血症是慢性肾脏病(chronic kidney disease,CKD)患者常见的并发症,发生率高达22.89%,远高于一般门诊患者(3.86%)[1];且与不良预后密切相关,CKD4—5期合并高钾血症的病死率高达20.12%~35.58%[2]。因此,CKD患者的钾摄入管理尤为重要。CKD治疗涉及多种药物,除了日常食物中摄入的钾,药物自身的钾负荷也不容忽视。尤其CKD患者中成药的使用较为普遍,如尿毒清颗粒、肾衰宁胶囊、肾炎康复片等。钾是植物生长的必需元素,且在中药材种植栽培的过程中一般会施钾肥以增加产量[3,4]。有研究显示,多种常用中药饮片及方剂中含有钾[5],因此,以中药材为原料的中成药也极可能含钾。且CKD患者常合并心血管系统疾病及其他需要使用中成药的情况[6],2种及以上中成药联用情况较为普遍[7],会进一步增加高钾血症风险。但目前关于中成药的钾含量还缺乏相关研究,导致临床对中成药的钾负荷认识不够,存在潜在隐患。电感耦合等离子体发射光谱法(inductively coupled plasma atomic emission spectrometry,ICP-OES)是元素分析的常用方法之一,适用于各类药品从痕量到常量的元素分析[8],具有灵敏度高、线性范围宽等优点。笔者在本研究选取32种常用中成药,包括百令胶囊等29种固体制剂和藿香正气口服液等3种液体制剂,微波消解后采用ICP-OES检测其钾含量并进行分析,为CKD患者安全合理使用中成药提供参考。
电感耦合等离子体发射光谱仪(安捷伦科技有限公司,型号:5110);微波消解仪(北京盈安美诚科学仪器有限公司,型号:DR-54H);电子分析天平(梅特勒-托利多仪器上海有限公司,型号:ME204/02,感量:0.1 mg);控温电热板(北京中兴伟业仪器有限公司,型号:DV215CD);高速多功能粉碎机(浙江省永康市松青五金厂,型号:SL-500A);实验室超纯水器(北京盈安美诚科学仪器有限公司,型号:MW-D30)等。
硝酸溶液(优级纯,成都市科龙化工试剂厂,批号:2022061401);钾元素储备液(国家有色金属及电子材料分析测试中心,批号:221004-6,含量:1 000 mg·L-1)。
32种中成药,除金沙通淋排石颗粒为四川省人民医院自制制剂外,其余均为市售药品,来源与批号见
1.4.1 微波消解条件 微波消解仪5 min内升温至120 ℃,保持5 min;5 min内升温至150 ℃,保持10 min;5 min内升温至190 ℃,保持20 min。
1.4.2 ICP-OES条件 功率1150 W,等离子体气流量12.0 L·min-1,辅助气流速为1.0 L·min-1,雾化气气体流量0.7 L·min-1,分析泵速50 r·min-1,径向观察模式,波长:766.49 nm。
精确吸取适量钾元素标准贮备液,用硝酸溶液逐级稀释配成标准溶液系列,其浓度分别为1、2、5、10、20 mg·L-1,同法配制不含钾的空白溶液。将标准溶液注入电感耦合等离子体仪器中,按照“1.4节”下实验条件进样测定标准溶液的信号响应值。以标准溶液的浓度为横坐标,标准溶液信号响应值为纵坐标,绘制标准曲线,计算得到钾的分析谱线:
固体中成药(取药前研匀)分别称取0.2~0.5 g(精确至0.001 g),液体中成药(取药前摇匀)分别移取1 mL(精确至0.01 mL)于微波消解内罐中,加入硝酸5~10 mL,加盖放置1 h,旋紧灌盖,按照微波消解仪标准操作步骤进行消解。冷却后取出,缓慢打开灌盖排气,用少量超纯水冲洗内盖,将消解罐放在控温电热板上,于100 ℃加热2~5 min,用超纯水定容至25 mL,混匀备用。按“1.4.1节”的实验条件,测定消解完全的样品中钾的吸收强度,计算每份样品的钾含量,
所纳入的32种中成药中钾含量0.014~24.2 mg·g-1,结果见
32种中成药中,胶囊剂和片剂较多,颗粒剂、口服液和丸剂相对较少。不同剂型占比及含钾量见
中成药包括成方制剂、单味制剂及提取物制剂等[9]。本研究纳入的中成药以成方制剂为主,其次是提取物制剂,单味制剂最少。不同的中成药制剂的钾含量见
食物摄入是钾的主要来源,《中国慢性肾脏病患者血钾管理实践专家共识(2020)》[14]和《2020 KDOQI CKD营养临床实践指南更新版》[15],均建议CKD患者控制膳食钾摄入量,使血清钾维持在正常范围内。《中华人民共和国卫生行业标准-慢性肾脏病患者膳食指导》中建议:当病情需要限制含钾高的食品时,应慎选水果及绿叶蔬菜。因为这些植物来源的食物中钾含量较高[16]。但大量研究显示,净产酸量增多与肾小球滤过率下降和终末期肾脏病进展显著相关[17,18,19],增加蔬菜和水果摄入可降低净产酸量,延缓CKD进展。因此,《中国慢性肾脏病营养治疗临床实践指南(2021版)》[20]建议CKD患者通过增加水果和蔬菜的摄入降低机体的净产酸。因此,对CKD患者,通过膳食限制来减少钾的摄入是存在矛盾的,且过度饮食限制反而会增加肠道对钾的吸收[21],应尽量减少膳食外来源的钾摄入。
3.3.1 中成药的钾负荷 中成药的钾含量可能与其制剂类型相关。董顺福等[22]测定11种治疗冠心病中成药中钾元素的含量。其中提取物制剂地奥心血康、银杏叶片的含钾量分别为0.954、0.217 mg·g-1;9种成方制剂,除速效救心丸成分为川芎和冰片未检出钾外,另8种含钾量在3.034~7.853 mg·g-1。本研究中速效救心丸含钾量最低,仅0.014 mg·g-1;32种中成药总体而言,提取物制剂含钾量最低,成方制剂明显高于前者,单味制剂含钾量次高。
中成药含钾一方面可能是原料中各种含钾中药饮片的叠加效应;另一方面可能与其成分中以含钾较高的全草、花、叶等部位入药有关[23]。王宇辉等[23]将《中药学》第五版教材中308味常用中药制成水煎剂测定钾含量,发现大部分含有不同程度的钾;其中全草(12.68±9.05) mg·g-1、花(8.27±6.01) mg·g-1、叶(13.92±16.73) mg·g-1,水煎剂含钾量较高。王艺舟等[24]在胎菊、蝉蜕等16种中药样品中均检测到较高含量的钾(>3 mg·g-1),其中植物胎菊的钾含量最高(>12 mg·g-1)。本研究纳入的金沙通淋排石颗粒含有金钱草;肾炎康复片含有槐花;尿毒清颗粒含有车前草;肾衰宁胶囊含有红花等;以上中成药钾检出范围为7.89~17.7 mg·g-1。黄葵胶囊虽是单味制剂,但其以全草入药,钾检出高达23.0 mg·g-1。
比较不同剂型中成药的平均钾含量,颗粒剂>胶囊剂>片剂>口服液>丸剂。这可能与不同剂型的制作工艺有关,但本研究纳入品种数有限,且目前文献中相关研究数据较少,尚不能确定其相关性,有待更多研究。
3.3.2 中成药钾负荷对CKD患者血钾的潜在影响 一项全国多中心研究显示CKD患者中成药的使用较为普遍[7]:48.5%的CKD患者口服,11.2%静脉注射;使用 1、2、3 和≥4种口服中成药的比例分别是60.2%、29.4%、8.8%和 1.6%。《中成药治疗慢性肾脏病3~5期(非透析)临床应用指南(2020年)》[25]推荐肌酐升高者使用尿毒清颗粒、肾衰宁胶囊等;尿蛋白异常者使用黄葵胶囊、肾炎康复片。本研究结果显示尿毒清颗粒、黄葵胶囊、肾炎康复片、肾衰宁胶囊每日钾摄入量均>100 mg。由于CKD患者本身钾排泄能力下降,若同时使用钾负荷较高的中成药,出现高钾血症的风险会进一步增高。一项尿毒清颗粒用于中重度CKD患者的疗效及安全性研究显示,146例患者按标准剂量服用尿毒清,其中2例发生高钾血症,发生率1.37%[26]。一项比较氯沙坦与肾炎康复片在原发性肾小球肾炎中的疗效和安全性的随机双盲对照研究显示,氯沙坦50 mg组(132例)和100 mg组(135例)均无高钾血症,而肾炎康复片组(129例)患者有2例因发生高钾血症而中止试验[27]。因此,对于CKD患者,除了减少食物中的钾摄入,使用高钾负荷的中成药也应特别谨慎。
3.3.3 中成药药理作用对CKD患者血钾的影响 尿毒清颗粒和肾炎康复片除自身钾负荷较高可影响血钾外,其所含成分的药理作用也可能升高血钾。两者均含有茯苓,茯苓的有效成分为茯苓素,肾炎康复片还含泽泻,其成分主要是24-乙酰泽泻醇A和泽泻醇B,上述成分的化学结构与醛固酮受体拮抗剂相似,能抑制Na+-K+与Na+-H+ 交换,减少K+的排泄,使体内K+增多[28]。此外,本研究纳入的金沙通淋排石颗粒、肾衰宁胶囊、三九胃泰胶囊、参芪十一味颗粒、六味地黄胶囊的组方里均含有茯苓或泽泻,除了本身的钾负荷外还可能通过类醛固酮受体拮抗作用升高血钾,需引起注意。
3.3.4 中成药与其他药物联用对血钾的影响 CKD患者中成药与其他药物,尤其是心血管系统药物,联合使用的情况较为常见。我国非透析CKD患者合并高血压的患病率高达67.3%~71.2%[6],常用降压药如血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂、螺内酯、β-受体阻断药,是引起血钾升高的常见药物,若联合使用含钾高的中成药,可能会进一步增加高钾血症风险。研究显示,肾炎康复片联合缬沙坦片较单用缬沙坦片引发高钾血症的比例更高[29];肾衰宁片联合厄贝沙坦胶囊较单用厄贝沙坦胶囊亦呈同样趋势[30];虽然以上差异无统计学意义,但对临床实践仍有一定提示意义。此外,肾脏病患者常用的环孢素、他克莫司本身可引起血钾升高,而临床上出于经济性考虑,常合用五酯胶囊升高这2种药的浓度,本研究显示五酯胶囊本身含钾,目前已有肾移植术后他克莫司联合五酯胶囊致高钾血症的病例报道[31,32]。因此,CKD患者联合使用容易升高血钾的药物与中成药,尤其是高钾负荷的中成药时,应特别谨慎。
CKD患者中成药使用较为普遍,中成药原材料主要取材于植物,常含有一定含量的钾。本研究纳入32种中成药都有钾的检出,其中成方制剂含钾量较高,药源性钾摄入量超过100 mg·d-1的中成药有8种。CKD患者本身钾排泄能力下降,若使用了钾负荷较高的中成药,导致钾摄入超标,将进一步加重肾脏负担,增加高钾血症风险。因此,CKD患者中成药的使用应特别关注药物潜在的钾负荷,此外,中成药成分潜在的升钾机制和联合用药带来的高钾血症风险也不容忽视。以上32种中成药中,CKD患者在药效类似的情况下,可选择含钾量相对较低的提取物制剂,尽量避免选择以全草、花、叶入药及含泽泻、茯苓的品种;如果使用富含钾的黄葵胶囊、肾衰宁胶囊、参松养心胶囊、肾炎康复片、金沙通淋排石颗粒、尿毒清颗粒、心通口服液、蓝芩口服液等品种,在低钾饮食基础上,应特别关注是否合用其他易引起药源性高钾的药物,以减少高钾血症的发生。
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
Daily dietary potassium (K) intake may be as large as the extracellular K pool. To avoid acute hyperkalemia, rapid removal of K from the extracellular space is essential. This is achieved by translocating K into cells and increasing urinary K excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K sensor that can modify sodium (Na) delivery to downstream segments to promote or limit K secretion. K sensing is mediated by the basolateral K channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K-induced aldosterone secretion, K sensing by renal epithelial cells represents a second feedback mechanism to control K balance. NCC's role in K homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na reabsorption while preventing K secretion. Conversely, NCC inactivation by high dietary K intake maximizes kaliuresis and limits Na retention, despite high aldosterone levels. NCC activation by a low-K diet contributes to salt-sensitive hypertension. K-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K diet. A possible role for K in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K homeostasis in health and disease.
DOI:10.1152/physrev.00044.2018
PMID:31793845
[本文引用:1]
|
[11] |
|
[12] |
Hyperkalemia is a potentially life-threatening electrolyte disorder appreciated with greater frequency in patients with renal disease, heart failure, and with use of certain medications such as renin angiotensin aldosterone inhibitors. The traditional views that hyperkalemia can be reliably diagnosed by electrocardiogram and that particular levels of hyperkalemia confer cardiotoxic risk have been challenged by several reports of patients with atypic presentations. Epidemiologic data demonstrate strong associations of morbidity and mortality in patients with hyperkalemia but these associations appear disconnected in certain patient populations and in differing clinical presentations. Physiologic adaptation, structural cardiac disease, medication use, and degree of concurrent illness might predispose certain patients presenting with hyperkalemia to a lower or higher threshold for toxicity. These factors are often overlooked; yet data suggest that the clinical context in which hyperkalemia develops is at least as important as the degree of hyperkalemia is in determining patient outcome. This review summarizes the clinical data linking hyperkalemia with poor outcomes and discusses how the efficacy of certain treatments might depend on the clinical presentation.
[本文引用:1]
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
To compare a severe protein restriction diet supplemented with ketoanalogues to a moderate protein restriction diet in order to limit glomerular filtration rate (GFR) decrease in an advanced renal insufficiency stage.
Prospective randomised study conducted to compare a severe protein restriction diet (0.30 g/kg/day) supplemented with a preparation of ketoanalogues, hydroxyanalogues of aminoacids and aminoacids (Group A) to a moderate protein restriction diet (0.65 g/kg/day) (Group B).
50 uremic patients included (25 in each group) with GFR is <20 mL/min/1.73m2.
There were no statistically significant differences between the two dietary regimens for the renal survival. But uremia decreased significantly in Group A (22.7+/-5.2 to 18.5+/-6.7 mmol/L) and increased in Group B (26.8+/-9.0 to 34.9+/-9.9 mmol/L). Calcemia increased in Group A from 2.28+/-0.18 to 2.42+/-0.17 mmol/L, p<0.01 with a stable phosphoremia while calcemia decreased in Group B (2.33+/-0.18 to 2.25+/-0.17 mmol/L, p<0.05). At the end of the study, Group A was different from Group B for calcemia (2.42+/-0.17 vs. 2.25+/-0.17 mmol/L, p<0.01), phosphoremia (1.39+/-0.30 vs. 1.80+/-0.65 mmol/L, p<0.02), alkaline phosphatase (61.42+/-22.93 vs. 78.8+/-27.0, p<0.05) and parathormone plasma levels (2.71+/-1.55 vs. 5.91+/-1.41 ng/mL, p<0.001).
Compared to a moderate protein restriction (0.65 g/kg/day), a severe protein restriction (0.3 g/kg/day) supplemented by ketoanologues does not limit GFR decrease when GFR is below 20 mL/min/1.73m2, but improves phosphocalcic plasma parameters.
PMID:10511331
[本文引用:1]
|
[18] |
Non-volatile acid is produced by metabolism of organic sulfur in dietary protein, and promotes kidney damage. We investigated the role of dietary acid load, in terms of net endogenous acid production (NEAP), in chronic kidney disease (CKD) progression.
217 CKD patients on low-protein diet with a normal serum bicarbonate level were enrolled in this retrospective cohort study in Japan. The primary outcome was 25% decline in estimated glomerular filtration rate (eGFR) or start of dialysis. Their NEAP was measured every 3 months. The patients were categorized into four groups on the basis of quartiles of NEAP every 3 months. The groups were treated as time-dependent variables.
The average age (SD) was 70.6 (7.1) years; eGFR 23.5 (14.2) ml/min/1.73 m(2). Analysis using extended Cox models for the NEAP groups adjusted for baseline characteristics (referring to group 1 showing the lowest NEAP) showed that high NEAP was associated with a high risk of CKD progression; group 2, adjusted hazard ratio (HR) 3.930 (95% confidence interval (CI) 1.914, 8.072); group 3, adjusted HR 4.740 (95% CI 2.196, 10.288); group 4, adjusted HR 4.303 (95% CI 2.103, 8.805). Logistic regression analysis adjusted for baseline characteristics showed that the occurrence of hypoalbuminemia or hyperkalemia was associated with low serum bicarbonate level and the presence of complications at baseline, but not with NEAP.
In elderly CKD patients, our findings suggest that high NEAP is independently associated with CKD progression. The decrease in NEAP may be an effective kidney-protective therapy.
DOI:10.1159/000358262
PMID:24513976
[本文引用:1]
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|